IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2991-d369670.html
   My bibliography  Save this article

Thermo-Economic Study of a Regenerative Dual-Loop ORC System Coupled to the Main Diesel Engines of a General Support Vessel

Author

Listed:
  • Athanasios G. Vallis

    (Naval Architecture and Marine Engineering Section, Hellenic Naval Academy, 18539 Piraeus, Greece)

  • Theodoros C. Zannis

    (Naval Architecture and Marine Engineering Section, Hellenic Naval Academy, 18539 Piraeus, Greece)

  • Elias A. Yfantis

    (Naval Architecture and Marine Engineering Section, Hellenic Naval Academy, 18539 Piraeus, Greece
    Department of Engineering, School of Sciences and Engineering, University of Nicosia, Nicosia 24005, Cyprus)

  • Efthimios G. Pariotis

    (Naval Architecture and Marine Engineering Section, Hellenic Naval Academy, 18539 Piraeus, Greece)

  • John S. Katsanis

    (Naval Architecture and Marine Engineering Section, Hellenic Naval Academy, 18539 Piraeus, Greece)

  • Konstantina D. Asimakopoulou

    (Department of Engineering, School of Sciences and Engineering, University of Nicosia, Nicosia 24005, Cyprus)

Abstract

A thermo-economic analysis of a regenerative dual-loop organic Rankine cycle (ORC) is conducted, which will be coupled with the main diesel engines of a general support vessel. An energy and exergy analysis of the regenerative dual-loop ORC is conducted. The energy and exergy analysis results of the regenerative dual-loop ORC are compared with pertinent results for a simple dual-loop ORC without regeneration. A mission analysis that was based on a vessel speed profile with the proposed ORC was conducted. A heat transfer analysis was performed for dimensioning the heat exchangers of both ORC loops. Finally, an economic analysis is conducted to calculate the total capital cost and the payback period of the proposed ORC. The results showed that the proposed ORC is thermodynamically superior in both energetic and exergetic terms compared to the simple dual-loop ORC. The total fuel cost saving is 337,493 Euros, the total CO 2 emission saving is 1,153,416.4 kg, and the SO 2 emission saving is 36,044.3 kg. The total capital cost of the proposed ORC is 2,546,000 Euros. Finally, the installation of the proposed ORC in the examined vessel is economically feasible because it results in a reasonable payback period, which is less than nine years.

Suggested Citation

  • Athanasios G. Vallis & Theodoros C. Zannis & Elias A. Yfantis & Efthimios G. Pariotis & John S. Katsanis & Konstantina D. Asimakopoulou, 2020. "Thermo-Economic Study of a Regenerative Dual-Loop ORC System Coupled to the Main Diesel Engines of a General Support Vessel," Energies, MDPI, vol. 13(11), pages 1-45, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2991-:d:369670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scardigno, Domenico & Fanelli, Emanuele & Viggiano, Annarita & Braccio, Giacobbe & Magi, Vinicio, 2015. "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources," Energy, Elsevier, vol. 91(C), pages 807-815.
    2. Song, Jian & Song, Yin & Gu, Chun-wei, 2015. "Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines," Energy, Elsevier, vol. 82(C), pages 976-985.
    3. Liu, Peng & Shu, Gequn & Tian, Hua, 2019. "How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery," Energy, Elsevier, vol. 174(C), pages 543-552.
    4. Shu, Gequn & Liu, Lina & Tian, Hua & Wei, Haiqiao & Yu, Guopeng, 2014. "Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery," Applied Energy, Elsevier, vol. 113(C), pages 1188-1198.
    5. Xi, Huan & Li, Ming-Jia & Xu, Chao & He, Ya-Ling, 2013. "Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm," Energy, Elsevier, vol. 58(C), pages 473-482.
    6. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine," Applied Energy, Elsevier, vol. 149(C), pages 1-12.
    7. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    8. Macián, V. & Serrano, J.R. & Dolz, V. & Sánchez, J., 2013. "Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine," Applied Energy, Elsevier, vol. 104(C), pages 758-771.
    9. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    10. Song, Jian & Gu, Chun-wei, 2015. "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery," Applied Energy, Elsevier, vol. 156(C), pages 280-289.
    11. Zhang, H.G. & Wang, E.H. & Fan, B.Y., 2013. "A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 1504-1513.
    12. Baofeng Yao & Fubin Yang & Hongguang Zhang & Enhua Wang & Kai Yang, 2014. "Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine," Energies, MDPI, vol. 7(11), pages 1-22, November.
    13. Shu, Gequn & Liang, Youcai & Wei, Haiqiao & Tian, Hua & Zhao, Jian & Liu, Lina, 2013. "A review of waste heat recovery on two-stroke IC engine aboard ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 385-401.
    14. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    2. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    3. Yang, Fubin & Zhang, Hongguang & Song, Songsong & Bei, Chen & Wang, Hongjin & Wang, Enhua, 2015. "Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine," Energy, Elsevier, vol. 93(P2), pages 2208-2228.
    4. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
    6. Song, Jian & Gu, Chun-wei, 2015. "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery," Applied Energy, Elsevier, vol. 156(C), pages 280-289.
    7. Zhang, Tao & Ma, Junhua & Zhou, Yanglin & Wang, Yongzhen & Chen, Qifang & Li, Xiaoping & Liu, Liuchen, 2021. "Thermo-economic analysis and optimization of ICE-ORC systems based on a splitter regulation," Energy, Elsevier, vol. 226(C).
    8. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    9. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    10. Wang, Shiqi & Yuan, Zhongyuan & Yu, Nanyang, 2023. "Thermo-economic optimization of organic Rankine cycle with steam-water dual heat source," Energy, Elsevier, vol. 274(C).
    11. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    12. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    13. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    14. Yang, Fubin & Zhang, Hongguang & Yu, Zhibin & Wang, Enhua & Meng, Fanxiao & Liu, Hongda & Wang, Jingfu, 2017. "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery," Energy, Elsevier, vol. 118(C), pages 753-775.
    15. Hongjin Wang & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Chen Bei & Kai Yang, 2015. "Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization," Energies, MDPI, vol. 8(9), pages 1-26, September.
    16. Athanasios G. Vallis & Theodoros C. Zannis & Evangelos V. Hristoforou & Elias A. Yfantis & Efthimios G. Pariotis & Dimitrios T. Hountalas & John S. Katsanis, 2022. "Design of Container Ship Main Engine Waste Heat Recovery Supercritical CO 2 Cycles, Optimum Cycle Selection through Thermo-Economic Optimization with Genetic Algorithm and Its Exergo-Economic and Exer," Energies, MDPI, vol. 15(15), pages 1-30, July.
    17. Zhu, Yilin & Li, Weiyi & Sun, Guanzhong & Li, Haojie, 2018. "Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine," Energy, Elsevier, vol. 158(C), pages 343-356.
    18. Guillaume, Ludovic & Legros, Arnaud & Desideri, Adriano & Lemort, Vincent, 2017. "Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd," Applied Energy, Elsevier, vol. 186(P3), pages 408-422.
    19. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    20. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2991-:d:369670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.