IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221029303.html
   My bibliography  Save this article

Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery

Author

Listed:
  • Zhang, Xuanang
  • Wang, Xuan
  • Cai, Jinwen
  • He, Zhaoxian
  • Tian, Hua
  • Shu, Gequn
  • Shi, Lingfeng

Abstract

The organic Rankine cycle (ORC) is a promising engine waste heat recovery (WHR) technology. However, with a change in the engine operating conditions, the choice of ORC-WHR system operating parameters have great influence on system performance. Therefore, this study investigated the changing law of ORC-WHR system operating parameters optimal value and the sensitivity of the system to the operating parameters under eight different engine operating conditions. That is, the research on operating parameters matching characteristic. The two key operating parameters selected were expander speed (Sexp_shaft) and superheat degree (SD). The performance indexes of the system included expander shaft efficiency (ηexp_shaft), thermal efficiency (ηth), evaporator heat exchange (Qeva), expander output work (Wexp_shaft), pump work consumption (Wpump), and net power output (Wnet). The results showed that Sexp_shaft was the most significant parameter affecting the system performance. As engine load increased from 1000 rpm, 300 Nm to 1350 rpm, 650 Nm, the best Sexp_shaft of Wnet increased from 1200 to 1600 rpm. As the engine load increased, the sensitivity of the system to Sexp_shaft and SD gradually decreased. The influence of the Sexp_shaft on Wnet decreased from 90.28% to 7.78%. The effect of the SD on the Qeva decreased from 11.26% to 5.16%.

Suggested Citation

  • Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & He, Zhaoxian & Tian, Hua & Shu, Gequn & Shi, Lingfeng, 2022. "Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029303
    DOI: 10.1016/j.energy.2021.122681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petr, Philipp & Raabe, Gabriele, 2015. "Evaluation of R-1234ze(Z) as drop-in replacement for R-245fa in Organic Rankine Cycles – From thermophysical properties to cycle performance," Energy, Elsevier, vol. 93(P1), pages 266-274.
    2. Cai, Jinwen & Shu, Gequn & Tian, Hua & Wang, Xuan & Wang, Rui & Shi, Xiaolei, 2020. "Validation and analysis of organic Rankine cycle dynamic model using zeotropic mixture," Energy, Elsevier, vol. 197(C).
    3. Zhang, Hong-Hu & Xi, Huan & He, Ya-Ling & Zhang, Yu-Wen & Ning, Bo, 2019. "Experimental study of the organic rankine cycle under different heat and cooling conditions," Energy, Elsevier, vol. 180(C), pages 678-688.
    4. Eyerer, Sebastian & Wieland, Christoph & Vandersickel, Annelies & Spliethoff, Hartmut, 2016. "Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization," Energy, Elsevier, vol. 103(C), pages 660-671.
    5. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    6. Navarro-Esbrí, Joaquín & Molés, Francisco & Peris, Bernardo & Mota-Babiloni, Adrián & Kontomaris, Konstantinos, 2017. "Experimental study of an Organic Rankine Cycle with HFO-1336mzz-Z as a low global warming potential working fluid for micro-scale low temperature applications," Energy, Elsevier, vol. 133(C), pages 79-89.
    7. Baofeng Yao & Xu Ping & Hongguang Zhang, 2021. "Dynamic Response Characteristics Analysis and Energy, Exergy, and Economic (3E) Evaluation of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-32, September.
    8. Shu, Gequn & Liu, Lina & Tian, Hua & Wei, Haiqiao & Yu, Guopeng, 2014. "Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery," Applied Energy, Elsevier, vol. 113(C), pages 1188-1198.
    9. Pang, Kuo-Cheng & Chen, Shih-Chi & Hung, Tzu-Chen & Feng, Yong-Qiang & Yang, Shih-Cheng & Wong, Kin-Wah & Lin, Jaw-Ren, 2017. "Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat," Energy, Elsevier, vol. 133(C), pages 636-651.
    10. Yang, Fubin & Zhang, Hongguang & Yu, Zhibin & Wang, Enhua & Meng, Fanxiao & Liu, Hongda & Wang, Jingfu, 2017. "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery," Energy, Elsevier, vol. 118(C), pages 753-775.
    11. Li, Yung-Ming & Hung, Tzu-Chen & Wu, Chia-Jung & Su, Ting-Ying & Xi, Huan & Wang, Chi-Chuan, 2021. "Experimental investigation of 3-kW organic Rankine cycle (ORC) system subject to heat source conditions: A new appraisal for assessment," Energy, Elsevier, vol. 217(C).
    12. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    13. Wang, Xuan & Wang, Rui & Jin, Ming & Shu, Gequn & Tian, Hua & Pan, Jiaying, 2020. "Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    14. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    15. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    16. Li, Xiaoya & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Huang, Guangdai & Chen, Tianyu & Liu, Peng, 2017. "Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 696-707.
    17. Ye, Zhenhong & Yang, Jingye & Shi, Junye & Chen, Jiangping, 2020. "Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system," Energy, Elsevier, vol. 199(C).
    18. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).
    2. Li, Tailu & Qiao, Yuwen & Wang, Zeyu & Zhang, Yao & Gao, Xiang & Yuan, Ye, 2024. "Experimental study on dynamic power generation of three ORC-based cycle configurations under different heat source/sink conditions," Renewable Energy, Elsevier, vol. 227(C).
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    4. Wang, Jingyu & Tian, Hua & Wang, Xuan & Li, Ligeng & Sun, Rui & Bian, Xingyan & Shu, Gequn & Liang, Xingyu, 2024. "Process design methodology for rankine cycle based on heat matching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Hsieh, Jui-Ching & Chen, Yen-Hsun & Hsieh, Yi-Chi, 2023. "Experimental study of an organic Rankine cycle with a variable-rotational-speed scroll expander at various heat source temperatures," Energy, Elsevier, vol. 270(C).
    6. Ma, Qingfen & Gao, Zezhou & Huang, Jie & Mahian, Omid & Feng, Xin & Lu, Hui & Wang, Shenghui & Wang, Chengpeng & Tang, Rongnian & Li, Jingru, 2023. "Thermodynamic analysis and turbine design of a 100 kW OTEC-ORC with binary non-azeotropic working fluid," Energy, Elsevier, vol. 263(PE).
    7. Jie Ji & Jiayu Zhang & Xiaoying Jia & Rundong Ji & Zhenglin Sheng & Jingxin Qin & Huanyu Zhao & Jiankang Tang & Jiaoyue Su & Yaodong Wang, 2022. "A Working Fluid Assessment for a Biomass Organic Rankine Cycle under Different Conditions," Energies, MDPI, vol. 15(19), pages 1-20, September.
    8. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    9. Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & Wang, Rui & Bian, Xingyan & He, Zhaoxian & Tian, Hua & Shu, Gequn, 2023. "Operation strategy of a multi-mode Organic Rankine cycle system for waste heat recovery from engine cooling water," Energy, Elsevier, vol. 263(PE).
    10. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Xing, Chengda & Yan, Yinlian & Yang, Anren & Wang, Yan, 2023. "Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment," Applied Energy, Elsevier, vol. 348(C).
    11. Feng, Yong-Qiang & Zhang, Qiang & Xu, Kang-Jing & Wang, Chun-Ming & He, Zhi-Xia & Hung, Tzu-Chen, 2023. "Operation characteristics and performance prediction of a 3 kW organic Rankine cycle (ORC) with automatic control system based on machine learning methodology," Energy, Elsevier, vol. 263(PC).
    12. Yanni Yu & Mingqian Tian & Yanjun Liu & Beichen Lu & Yun Chen, 2024. "Experimental Research and Improved Neural Network Optimization Based on the Ocean Thermal Energy Conversion Experimental Platform," Energies, MDPI, vol. 17(17), pages 1-20, August.
    13. Wang, Chenfang & Liu, Shihao & Zhan, Shuming & Ou, Mengmeng & Wei, Jiangjun & Cheng, Xiaozhang & Zhuge, Weilin & Zhang, Yangjun, 2024. "Transcritical dual-loop Rankine cycle waste heat recovery system for China VI emission standards natural gas engine," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    2. Giuffrida, Antonio, 2018. "A theoretical study on the performance of a scroll expander in an organic Rankine cycle with hydrofluoroolefins (HFOs) in place of R245fa," Energy, Elsevier, vol. 161(C), pages 1172-1180.
    3. Peris, Bernardo & Navarro-Esbrí, Joaquín & Mateu-Royo, Carlos & Mota-Babiloni, Adrián & Molés, Francisco & Gutiérrez-Trashorras, Antonio J. & Amat-Albuixech, Marta, 2020. "Thermo-economic optimization of small-scale Organic Rankine Cycle: A case study for low-grade industrial waste heat recovery," Energy, Elsevier, vol. 213(C).
    4. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    5. Long Lyu & Wu Chen & Ankang Kan & Yuan Zhang & Song Xue & Jingbin Zeng, 2022. "Investigation of a Dual-Loop ORC for the Waste Heat Recovery of a Marine Main Engine," Energies, MDPI, vol. 15(22), pages 1-22, November.
    6. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    7. Wang, Lv & Ge, Zhong & Xu, Jian & Xie, Jianbin & Xie, Zhiyong, 2023. "Thermo-economic evaluations of novel dual-heater regenerative organic flash cycle (DROFC)," Energy, Elsevier, vol. 283(C).
    8. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    9. Amin Mahmoudzadeh Andwari & Apostolos Pesyridis & Vahid Esfahanian & Ali Salavati-Zadeh & Alireza Hajialimohammadi, 2019. "Modelling and Evaluation of Waste Heat Recovery Systems in the Case of a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 12(7), pages 1-26, April.
    10. Zhang, Fei-yang & Feng, Yong-qiang & He, Zhi-xia & Xu, Jing-wei & Zhang, Qiang & Xu, Kang-jing, 2022. "Thermo-economic optimization of biomass-fired organic Rankine cycles combined heat and power system coupled CO2 capture with a rated power of 30 kW," Energy, Elsevier, vol. 254(PC).
    11. Yang, Fubin & Zhang, Hongguang & Yu, Zhibin & Wang, Enhua & Meng, Fanxiao & Liu, Hongda & Wang, Jingfu, 2017. "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery," Energy, Elsevier, vol. 118(C), pages 753-775.
    12. Dokl, Monika & Gomilšek, Rok & Čuček, Lidija & Abikoye, Ben & Kravanja, Zdravko, 2022. "Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry," Energy, Elsevier, vol. 239(PE).
    13. Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & Wang, Rui & Bian, Xingyan & He, Zhaoxian & Tian, Hua & Shu, Gequn, 2023. "Operation strategy of a multi-mode Organic Rankine cycle system for waste heat recovery from engine cooling water," Energy, Elsevier, vol. 263(PE).
    14. Hsieh, Jui-Ching & Chen, Yen-Hsun & Hsieh, Yi-Chi, 2023. "Experimental study of an organic Rankine cycle with a variable-rotational-speed scroll expander at various heat source temperatures," Energy, Elsevier, vol. 270(C).
    15. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.
    16. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    17. Yang, Jingye & Gao, Lei & Ye, Zhenhong & Hwang, Yunho & Chen, Jiangping, 2021. "Binary-objective optimization of latest low-GWP alternatives to R245fa for organic Rankine cycle application," Energy, Elsevier, vol. 217(C).
    18. Zhu, Yilin & Li, Weiyi & Sun, Guanzhong & Li, Haojie, 2018. "Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine," Energy, Elsevier, vol. 158(C), pages 343-356.
    19. Amin Mahmoudzadeh Andwari & Apostolos Pesiridis & Vahid Esfahanian & Ali Salavati-Zadeh & Apostolos Karvountzis-Kontakiotis & Vishal Muralidharan, 2017. "A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine," Energies, MDPI, vol. 10(8), pages 1-17, July.
    20. Yang, Jingye & Ye, Zhenhong & Yu, Binbin & Ouyang, Hongsheng & Chen, Jiangping, 2019. "Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)," Energy, Elsevier, vol. 173(C), pages 721-731.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.