IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp636-651.html
   My bibliography  Save this article

Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat

Author

Listed:
  • Pang, Kuo-Cheng
  • Chen, Shih-Chi
  • Hung, Tzu-Chen
  • Feng, Yong-Qiang
  • Yang, Shih-Cheng
  • Wong, Kin-Wah
  • Lin, Jaw-Ren

Abstract

The main purpose of this paper is experimentally comparing of organic Rankine cycle (ORC) system, by using R245fa, R123 and their mixtures to generate maximum net power on simulated low-temperature industrial waste heat. Four mass fractions of R245fa:R123 have been injected into the system with the ratios of 1:0, 2:1, 1:2 and 0:1 to test the system performance separately. To imitate industrial low-temperature waste heat, the heat source temperature is fixed at 110 °C and 120 °C with specified mass flow rate of heat source. Focusing on the change of mass flow rate of working fluid and expander inlet superheating, experiment results show that the system heat input increases when mass flow rate of working fluid increases. All four mass fractions of working fluids generate maximum net power when the system mass flow rate is around 0.15 kg/s. The case of pure R245fa generates a maximum net power 1.56 kW with an electrical efficiency of about 3.9% when heat source temperature is fixed at 110 °C. While, the case of mixture R245fa:R123 = 2:1 generates a maximum net power 1.66 kW with an electrical efficiency of about 4.4% when heat source temperature input is fixed at 120 °C.

Suggested Citation

  • Pang, Kuo-Cheng & Chen, Shih-Chi & Hung, Tzu-Chen & Feng, Yong-Qiang & Yang, Shih-Cheng & Wong, Kin-Wah & Lin, Jaw-Ren, 2017. "Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat," Energy, Elsevier, vol. 133(C), pages 636-651.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:636-651
    DOI: 10.1016/j.energy.2017.05.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:636-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.