IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v133y2014icp183-196.html
   My bibliography  Save this article

Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

Author

Listed:
  • Feru, Emanuel
  • de Jager, Bram
  • Willems, Frank
  • Steinbuch, Maarten

Abstract

This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat recovery system, energy is recovered from both the exhaust gas recirculation line and the main exhaust line. Due to the similar design of these two heat exchangers, only the exhaust gas recirculation heat exchanger model is presented in this paper. Based on mass and energy conservation principles, the model describes the dynamics of two-phase fluid flow. Compared to other studies, the model is able to capture multiple phase transitions along the fluid flow by combining finite difference approach with moving boundary approaches. The developed model has low computational complexity, which makes it suitable for control design and real-time implementation.

Suggested Citation

  • Feru, Emanuel & de Jager, Bram & Willems, Frank & Steinbuch, Maarten, 2014. "Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines," Applied Energy, Elsevier, vol. 133(C), pages 183-196.
  • Handle: RePEc:eee:appene:v:133:y:2014:i:c:p:183-196
    DOI: 10.1016/j.apenergy.2014.07.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badami, M. & Mura, M., 2009. "Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE)," Energy, Elsevier, vol. 34(9), pages 1315-1324.
    2. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    3. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    4. Horst, Tilmann Abbe & Rottengruber, Hermann-Sebastian & Seifert, Marco & Ringler, Jürgen, 2013. "Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems," Applied Energy, Elsevier, vol. 105(C), pages 293-303.
    5. Schuster, A. & Karellas, S. & Aumann, R., 2010. "Efficiency optimization potential in supercritical Organic Rankine Cycles," Energy, Elsevier, vol. 35(2), pages 1033-1039.
    6. Gou, Xiaolong & Yang, Suwen & Xiao, Heng & Ou, Qiang, 2013. "A dynamic model for thermoelectric generator applied in waste heat recovery," Energy, Elsevier, vol. 52(C), pages 201-209.
    7. Lo Brano, Valerio & Ciulla, Giuseppina & Piacentino, Antonio & Cardona, Fabio, 2014. "Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: Description and experimental validation," Renewable Energy, Elsevier, vol. 68(C), pages 181-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & Montoro, L. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2017. "Transient behavior under a normalized driving cycle of an automotive thermoelectric generator," Applied Energy, Elsevier, vol. 206(C), pages 1282-1296.
    2. Ramadan, M. & Khaled, M. & El Hage, H. & Harambat, F. & Peerhossaini, H., 2016. "Effect of air temperature non-uniformity on water–air heat exchanger thermal performance – Toward innovative control approach for energy consumption reduction," Applied Energy, Elsevier, vol. 173(C), pages 481-493.
    3. Rathod, Dhruvang & Xu, Bin & Filipi, Zoran & Hoffman, Mark, 2019. "An experimentally validated, energy focused, optimal control strategy for an Organic Rankine Cycle waste heat recovery system," Applied Energy, Elsevier, vol. 256(C).
    4. Nicolas Stanzel & Thomas Streule & Markus Preißinger & Dieter Brüggemann, 2016. "Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck," Energies, MDPI, vol. 9(11), pages 1-16, November.
    5. Emanuel Feru & Frank Willems & Bram De Jager & Maarten Steinbuch, 2014. "Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines," Energies, MDPI, vol. 7(10), pages 1-22, October.
    6. Koppauer, H. & Kemmetmüller, W. & Kugi, A., 2017. "Modeling and optimal steady-state operating points of an ORC waste heat recovery system for diesel engines," Applied Energy, Elsevier, vol. 206(C), pages 329-345.
    7. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    8. Amiri, Leyla & de Brito, Marco Antonio Rodrigues & Baidya, Durjoy & Kuyuk, Ali Fahrettin & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P., 2019. "Numerical investigation of rock-pile based waste heat storage for remote communities in cold climates," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    10. Agudelo, Andrés F. & García-Contreras, Reyes & Agudelo, John R. & Armas, Octavio, 2016. "Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle," Applied Energy, Elsevier, vol. 174(C), pages 201-212.
    11. Xu, Bin & Rathod, Dhruvang & Kulkarni, Shreyas & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2017. "Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications," Applied Energy, Elsevier, vol. 205(C), pages 260-279.
    12. Gleinser, Moritz & Wieland, Christoph & Spliethoff, Hartmut, 2018. "Batch evaporation power cycle: Influence of thermal inertia and residence time," Energy, Elsevier, vol. 157(C), pages 1090-1101.
    13. Di Battista, D. & Mauriello, M. & Cipollone, R., 2015. "Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle," Applied Energy, Elsevier, vol. 152(C), pages 109-120.
    14. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    15. Xu, Hong & Yu, Wenhui & Zhang, Yuan & Ma, Suli & Wu, Zhiyuan & Liu, Xiaohu, 2023. "Flow and heat transfer performance of bionic heat transfer structures with hybrid triply periodic minimal surfaces," Applied Energy, Elsevier, vol. 351(C).
    16. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frikha, Sobhi & Driss, Zied & Hagui, Mohamed Aymen, 2015. "Computational study of the diffuser angle effect in the design of a waste heat recovery system for oil field cabins," Energy, Elsevier, vol. 84(C), pages 219-238.
    2. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    3. Di Battista, D. & Mauriello, M. & Cipollone, R., 2015. "Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle," Applied Energy, Elsevier, vol. 152(C), pages 109-120.
    4. Xuan Wang & Hua Tian & Gequn Shu, 2016. "Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines," Energies, MDPI, vol. 9(7), pages 1-21, July.
    5. Jahedul Islam Chowdhury & Bao Kha Nguyen & David Thornhill & Yukun Hu & Payam Soulatiantork & Nazmiye Balta-Ozkan & Liz Varga, 2018. "Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems," Energies, MDPI, vol. 11(4), pages 1-24, April.
    6. Bouvier, Jean-Louis & Lemort, Vincent & Michaux, Ghislain & Salagnac, Patrick & Kientz, Thiebaut, 2016. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems," Applied Energy, Elsevier, vol. 169(C), pages 788-798.
    7. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    8. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    9. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    10. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    11. Huster, Wolfgang R. & Vaupel, Yannic & Mhamdi, Adel & Mitsos, Alexander, 2018. "Validated dynamic model of an organic Rankine cycle (ORC) for waste heat recovery in a diesel truck," Energy, Elsevier, vol. 151(C), pages 647-661.
    12. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    13. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.
    14. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    15. Shi, Yao & Zhang, Zhiming & Xie, Lei & Wu, Xialai & Liu, Xueqin Amy & Lu, Shan & Su, Hongye, 2022. "Modified hierarchical strategy for transient performance improvement of the ORC based waste heat recovery system," Energy, Elsevier, vol. 261(PA).
    16. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    17. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    18. Jung, Hyung-Chul & Taylor, Leighton & Krumdieck, Susan, 2015. "An experimental and modelling study of a 1 kW organic Rankine cycle unit with mixture working fluid," Energy, Elsevier, vol. 81(C), pages 601-614.
    19. Wang, Xuan & Shu, Gequn & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2018. "The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery," Energy, Elsevier, vol. 147(C), pages 440-450.
    20. Shu, Gequn & Wang, Rui & Tian, Hua & Wang, Xuan & Li, Xiaoya & Cai, Jinwen & Xu, Zhiqiang, 2020. "Dynamic performance of the transcritical power cycle using CO2-based binary zeotropic mixtures for truck engine waste heat recovery," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:133:y:2014:i:c:p:183-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.