IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp181-193.html
   My bibliography  Save this article

Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: Description and experimental validation

Author

Listed:
  • Lo Brano, Valerio
  • Ciulla, Giuseppina
  • Piacentino, Antonio
  • Cardona, Fabio

Abstract

The use of photovoltaic (PV) systems has been showing a significant growth trend but for a more effective development of this technology it is essential to have higher energy conversion performances. Producers of PV often declare an higher efficiency respect to real conditions and this deviation is mainly due to the difference between nominal and real temperature conditions of the PV. To improve the solar cell energy conversion efficiency many authors have proposed a methodology to keep lower the temperature of a PV system: a modified PV system built with a normal PV panel coupled with a Phase Change Material (PCM) heat storage device. In this paper is described a thermal model analysis of the PV–PCM system based on a theoretical study using finite difference approach. The authors developed an algorithm based on an explicit finite difference formulation of energy balance of the PV–PCM system. To this aim, a forward difference at time t and a first-order central difference for the space derivative at position x was used. Two sets of recursive equations were developed for two types of spatial domains: a boundary domain and an internal domain .The reliability of the developed model is tested by a comparison with data coming from a test facility. Results of this experience confirm the performed numerical simulations and show that the proposed model is valid and can be used to determine the thermal behaviour of a solar cell coupled with a PCM heat storage device.

Suggested Citation

  • Lo Brano, Valerio & Ciulla, Giuseppina & Piacentino, Antonio & Cardona, Fabio, 2014. "Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: Description and experimental validation," Renewable Energy, Elsevier, vol. 68(C), pages 181-193.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:181-193
    DOI: 10.1016/j.renene.2014.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
    2. Lo Brano, Valerio & Orioli, Aldo & Ciulla, Giuseppina & Culotta, Simona, 2011. "Quality of wind speed fitting distributions for the urban area of Palermo, Italy," Renewable Energy, Elsevier, vol. 36(3), pages 1026-1039.
    3. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    4. Valerio Lo Brano & Giuseppina Ciulla & Antonio Piacentino & Fabio Cardona, 2013. "On the Efficacy of PCM to Shave Peak Temperature of Crystalline Photovoltaic Panels: An FDM Model and Field Validation," Energies, MDPI, vol. 6(12), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    2. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    3. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    4. Singh, Preeti & Khanna, Sourav & Becerra, Victor & Newar, Sanjeev & Sharma, Vashi & Mallick, Tapas K. & Hutchinson, David & Radulovic, Jovana & Khusainov, Rinat, 2020. "Power improvement of finned solar photovoltaic phase change material system," Energy, Elsevier, vol. 193(C).
    5. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    6. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    7. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    8. Yıldız, Çağatay & Arıcı, Müslüm & Nižetić, Sandro & Shahsavar, Amin, 2020. "Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins," Energy, Elsevier, vol. 207(C).
    9. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.
    10. Feru, Emanuel & de Jager, Bram & Willems, Frank & Steinbuch, Maarten, 2014. "Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines," Applied Energy, Elsevier, vol. 133(C), pages 183-196.
    11. Abdulmunem, Abdulmunem R. & Mohd Samin, Pakharuddin & Abdul Rahman, Hasimah & Hussien, Hashim A. & Izmi Mazali, Izhari & Ghazali, Habibah, 2021. "Numerical and experimental analysis of the tilt angle’s effects on the characteristics of the melting process of PCM-based as PV cell’s backside heat sink," Renewable Energy, Elsevier, vol. 173(C), pages 520-530.
    12. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    13. Borri, Emiliano & Sze, Jia Yin & Tafone, Alessio & Romagnoli, Alessandro & Li, Yongliang & Comodi, Gabriele, 2020. "Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage," Applied Energy, Elsevier, vol. 275(C).
    14. Gleinser, Moritz & Wieland, Christoph & Spliethoff, Hartmut, 2018. "Batch evaporation power cycle: Influence of thermal inertia and residence time," Energy, Elsevier, vol. 157(C), pages 1090-1101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valerio Lo Brano & Giuseppina Ciulla & Antonio Piacentino & Fabio Cardona, 2013. "On the Efficacy of PCM to Shave Peak Temperature of Crystalline Photovoltaic Panels: An FDM Model and Field Validation," Energies, MDPI, vol. 6(12), pages 1-23, November.
    2. Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    3. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Fernández, Ana Inés & Cabeza, Luisa F., 2016. "Mechanical response evaluation of microcapsules from different slurries," Renewable Energy, Elsevier, vol. 85(C), pages 732-739.
    4. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    5. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    6. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    7. Stéphane Guichard & Frédéric Miranville & Dimitri Bigot & Bruno Malet-Damour & Teddy Libelle & Harry Boyer, 2015. "Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials," Energies, MDPI, vol. 9(1), pages 1-16, December.
    8. Zhao, Pin & Yue, Qinyan & He, Hongtao & Gao, Baoyu & Wang, Yan & Li, Qian, 2014. "Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions," Applied Energy, Elsevier, vol. 115(C), pages 483-490.
    9. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    10. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    11. Vasile Bendic & Dan Dobrotă & Tiberiu Dobrescu & George Enciu & Nicoleta-Elisabeta Pascu, 2019. "Rheological Issues of Phase Change Materials Obtained by the Complex Coacervation of Butyl Stearate in Poly Methyl Methacrylate Membranes," Energies, MDPI, vol. 12(5), pages 1-15, March.
    12. Silva, Tiago & Vicente, Romeu & Amaral, Cláudia & Figueiredo, António, 2016. "Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis," Applied Energy, Elsevier, vol. 179(C), pages 64-84.
    13. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    14. Mousavi, Seyedmostafa & Rismanchi, Behzad & Brey, Stefan & Aye, Lu, 2021. "PCM embedded radiant chilled ceiling: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    16. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.
    17. Askari, Minoo & Jahangir, Mohammad Hossein, 2023. "Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials," Energy, Elsevier, vol. 284(C).
    18. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    19. Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C. & Mahlia, T.M.I., 2013. "Curbing global warming with phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 23-30.
    20. Pirasaci, Tolga, 2020. "Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:181-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.