IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp887-899.html
   My bibliography  Save this article

Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks

Author

Listed:
  • Preißinger, Markus
  • Schwöbel, Johannes A.H.
  • Klamt, Andreas
  • Brüggemann, Dieter

Abstract

Automotive industry is driven by economic and legislative constraints to increase fuel efficiency and reduce CO2-emissions to a certain extend. To reach the required threshold values, manufacturers consider waste heat recovery by means of Organic Rankine Cycle (ORC) in passenger cars and heavy-duty trucks. This work deals with the crucial issue of identifying an optimal working fluid which is flexible in terms of application and condensing temperature and which is applicable in real systems. For this purpose, a large-scale screening based on computational chemistry and thermodynamic process simulation is coupled with a multi-criteria evaluation. In total, about 72 million chemical substances provided by the PubChem database are screened and more than 3000 promising candidates are evaluated considering COSMO-RS based thermodynamic data as well as constructional, regulatory and security aspects. Five promising working fluids are identified and it is shown that these fluids outperform widely discussed candidates like synthetic refrigerants. Even more remarkably is the fact that within the TOP 100 working fluids only twelve have already been reported in ORC literature. However, the optimal set of working varies as it depends on configuration (with and without mass flow splitting) and condensing temperature. In general, the study demonstrates that a large-scale screening of the complete chemical space can reveal unconventional working fluids for thermodynamic cycles.

Suggested Citation

  • Preißinger, Markus & Schwöbel, Johannes A.H. & Klamt, Andreas & Brüggemann, Dieter, 2017. "Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks," Applied Energy, Elsevier, vol. 206(C), pages 887-899.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:887-899
    DOI: 10.1016/j.apenergy.2017.08.212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191731245X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu, Gequn & Zhao, Mingru & Tian, Hua & Huo, Yongzhan & Zhu, Weijie, 2016. "Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine," Energy, Elsevier, vol. 115(P1), pages 756-769.
    2. Benato, A. & Kærn, M.R. & Pierobon, L. & Stoppato, A. & Haglind, F., 2015. "Analysis of hot spots in boilers of organic Rankine cycle units during transient operation," Applied Energy, Elsevier, vol. 151(C), pages 119-131.
    3. Domingues, António & Santos, Helder & Costa, Mário, 2013. "Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle," Energy, Elsevier, vol. 49(C), pages 71-85.
    4. Markus Preiszinger & Florian Heberle & Dieter Brüggemann, 2013. "Advanced Organic Rankine Cycle for geothermal application," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 8(suppl_1), pages 62-68, March.
    5. Shu, Gequn & Wang, Xuan & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2017. "Scan of working fluids based on dynamic response characters for Organic Rankine Cycle using for engine waste heat recovery," Energy, Elsevier, vol. 133(C), pages 609-620.
    6. Glover, Stephen & Douglas, Roy & De Rosa, Mattia & Zhang, Xiaolei & Glover, Laura, 2015. "Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery," Energy, Elsevier, vol. 93(P2), pages 1568-1580.
    7. Pili, Roberto & Romagnoli, Alessandro & Kamossa, Kai & Schuster, Andreas & Spliethoff, Hartmut & Wieland, Christoph, 2017. "Organic Rankine Cycles (ORC) for mobile applications – Economic feasibility in different transportation sectors," Applied Energy, Elsevier, vol. 204(C), pages 1188-1197.
    8. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    9. Nicolas Stanzel & Thomas Streule & Markus Preißinger & Dieter Brüggemann, 2016. "Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck," Energies, MDPI, vol. 9(11), pages 1-16, November.
    10. Su, Wen & Zhao, Li & Deng, Shuai, 2017. "Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model," Applied Energy, Elsevier, vol. 202(C), pages 618-627.
    11. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    12. Guillaume, Ludovic & Legros, Arnaud & Desideri, Adriano & Lemort, Vincent, 2017. "Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd," Applied Energy, Elsevier, vol. 186(P3), pages 408-422.
    13. Kim, Young Min & Shin, Dong Gil & Kim, Chang Gi & Cho, Gyu Baek, 2016. "Single-loop organic Rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources," Energy, Elsevier, vol. 96(C), pages 482-494.
    14. Xu, Bin & Rathod, Dhruvang & Kulkarni, Shreyas & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2017. "Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications," Applied Energy, Elsevier, vol. 205(C), pages 260-279.
    15. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    16. Panesar, Angad Singh, 2017. "An innovative Organic Rankine Cycle system for integrated cooling and heat recovery," Applied Energy, Elsevier, vol. 186(P3), pages 396-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Pengcheng & Cao, Qing & Li, Jing & Wang, Yandong & Pei, Gang & Gao, Cai & Zhao, Hongling & Liu, Xunfen, 2020. "Effect of regenerator on the direct steam generation solar power system characterized by prolonged thermal storage and stable power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 1099-1116.
    2. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    3. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    4. Galuppo, Francesco & Reiche, Thomas & Lemort, Vincent & Dufour, Pascal & Nadri, Madiha, 2021. "Organic Rankine Cycle based waste heat recovery modeling and control of the low pressure side using direct condensation and dedicated fans," Energy, Elsevier, vol. 216(C).
    5. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    6. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    7. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    8. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    9. Schilling, J. & Entrup, M. & Hopp, M. & Gross, J. & Bardow, A., 2021. "Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic Rankine Cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Li, Xiaoya & Tian, Hua & Shu, Gequn & Zhao, Mingru & Markides, Christos N. & Hu, Chen, 2019. "Potential of carbon dioxide transcritical power cycle waste-heat recovery systems for heavy-duty truck engines," Applied Energy, Elsevier, vol. 250(C), pages 1581-1599.
    11. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Martin T. White & Abdulnaser I. Sayma, 2018. "A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles," Energies, MDPI, vol. 11(4), pages 1-26, March.
    13. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    14. Rijpkema, Jelmer & Erlandsson, Olof & Andersson, Sven B. & Munch, Karin, 2022. "Exhaust waste heat recovery from a heavy-duty truck engine: Experiments and simulations," Energy, Elsevier, vol. 238(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    3. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    4. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    5. Rijpkema, Jelmer & Erlandsson, Olof & Andersson, Sven B. & Munch, Karin, 2022. "Exhaust waste heat recovery from a heavy-duty truck engine: Experiments and simulations," Energy, Elsevier, vol. 238(PB).
    6. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    7. Rosset, Kévin & Mounier, Violette & Guenat, Eliott & Schiffmann, Jürg, 2018. "Multi-objective optimization of turbo-ORC systems for waste heat recovery on passenger car engines," Energy, Elsevier, vol. 159(C), pages 751-765.
    8. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    9. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Liu, Peng & Shu, Gequn & Tian, Hua & Wang, Xuan & Yu, Zhigang, 2018. "Alkanes based two-stage expansion with interheating Organic Rankine cycle for multi-waste heat recovery of truck diesel engine," Energy, Elsevier, vol. 147(C), pages 337-350.
    11. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    12. Zhou, Xia & Zhang, Hanwei & Fang, Song & Rong, Yangyiming & Xu, Zhuoren & Jiang, Hanying & Wang, Kai & Zhi, Xiaoqin & Qiu, Limin, 2022. "Off-design performance analysis with various operation methods for ORC-based compression heat recovery system in cryogenic air separation units," Energy, Elsevier, vol. 261(PB).
    13. Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).
    14. Yang, Can & Wang, Weiye & Xie, Hui, 2019. "An efficiency model and optimal control of the vehicular diesel exhaust heat recovery system using an organic Rankine cycle," Energy, Elsevier, vol. 171(C), pages 547-555.
    15. Liu, Peng & Shu, Gequn & Tian, Hua, 2019. "How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery," Energy, Elsevier, vol. 174(C), pages 543-552.
    16. Cai, Jinwen & Tian, Hua & Wang, Xuan & Wang, Rui & Shu, Gequn & Wang, Mingtao, 2021. "A calibrated organic Rankine cycle dynamic model applying to subcritical system and transcritical system," Energy, Elsevier, vol. 237(C).
    17. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    18. Cai, Jinwen & Shu, Gequn & Tian, Hua & Wang, Xuan & Wang, Rui & Shi, Xiaolei, 2020. "Validation and analysis of organic Rankine cycle dynamic model using zeotropic mixture," Energy, Elsevier, vol. 197(C).
    19. Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
    20. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:887-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.