IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp1181-1198.html
   My bibliography  Save this article

Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery

Author

Listed:
  • White, M.T.
  • Oyewunmi, O.A.
  • Chatzopoulou, M.A.
  • Pantaleo, A.M.
  • Haslam, A.J.
  • Markides, C.N.

Abstract

The wider adoption of organic Rankine cycle (ORC) technology for power generation or cogeneration from renewable or recovered waste-heat in many applications can be facilitated by improved thermodynamic performance, but also reduced investment costs. In this context, it is suggested that the further development of ORC power systems should be guided by combined thermoeconomic assessments that can capture directly the trade-offs between performace and cost with the aim of proposing solutions with high resource-use efficiency and, importantly, improved economic viability. This paper couples, for the first time, the computer-aided molecular design (CAMD) of the ORC working-fluid based on the statistical associating fluid theory (SAFT)-γ Mie equation of state with thermodynamic modelling and optimisation, in addition to heat-exchanger sizing models, component cost correlations and thermoeconomic assessments. The resulting CAMD-ORC framework presents a novel and powerful approach with extended capabilities that allows the thermodynamic optimisation of the ORC system and working fluid to be performed in a single step, thus removing subjective and pre-emptive screening criteria that exist in conventional approaches, while also extending to include cost considerations relating to the resulting optimal systems. Following validation, the proposed framework is used to identify optimal cycles and working fluids over a wide range of conditions characterised by three different heat-source cases with temperatures of 150 °C, 250 °C and 350 °C, corresponding to small- to medium-scale applications. In each case, the optimal combination of ORC system design and working fluid is identified, and the corresponding capital costs are evaluated. It is found that fluids with low specific-investment costs (SIC) are different to those that maximise the power output. The fluids with the lowest SIC are isoheptane, 2-pentene and 2-heptene, with SICs of £5620, £2760 and £2070 per kW respectively, and corresponding power outputs of 32.9 kW, 136.6 kW and 213.9 kW.

Suggested Citation

  • White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1181-1198
    DOI: 10.1016/j.energy.2018.07.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oyeniyi A. Oyewunmi & Christos N. Markides, 2016. "Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System," Energies, MDPI, vol. 9(6), pages 1-21, June.
    2. Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
    3. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
    4. Taleb, Aly I. & Timmer, Michael A.G. & El-Shazly, Mohamed Y. & Samoilov, Aleksandr & Kirillov, Valeriy A. & Markides, Christos N., 2016. "A single-reciprocating-piston two-phase thermofluidic prime-mover," Energy, Elsevier, vol. 104(C), pages 250-265.
    5. Solanki, Roochi & Mathie, Richard & Galindo, Amparo & Markides, Christos N., 2013. "Modelling of a two-phase thermofluidic oscillator for low-grade heat utilisation: Accounting for irreversible thermal losses," Applied Energy, Elsevier, vol. 106(C), pages 337-354.
    6. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2015. "An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications," Applied Energy, Elsevier, vol. 138(C), pages 605-620.
    7. Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2016. "On the use of SAFT-VR Mie for assessing large-glide fluorocarbon working-fluid mixtures in organic Rankine cycles," Applied Energy, Elsevier, vol. 163(C), pages 263-282.
    8. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    9. Cignitti, Stefano & Andreasen, Jesper G. & Haglind, Fredrik & Woodley, John M. & Abildskov, Jens, 2017. "Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery," Applied Energy, Elsevier, vol. 203(C), pages 442-453.
    10. Feng, Yongqiang & Hung, TzuChen & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings," Energy, Elsevier, vol. 93(P2), pages 2018-2029.
    11. Kirmse, Christoph J.W. & Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2017. "A two-phase single-reciprocating-piston heat conversion engine: Non-linear dynamic modelling," Applied Energy, Elsevier, vol. 186(P3), pages 359-375.
    12. Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.
    13. Angelino, Gianfranco & Colonna di Paliano, Piero, 1998. "Multicomponent Working Fluids For Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 23(6), pages 449-463.
    14. Lukawski, Maciej Z. & DiPippo, Ronald & Tester, Jefferson W., 2018. "Molecular property methods for assessing efficiency of organic Rankine cycles," Energy, Elsevier, vol. 142(C), pages 108-120.
    15. Jesper G. Andreasen & Martin R. Kærn & Leonardo Pierobon & Ulrik Larsen & Fredrik Haglind, 2016. "Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids," Energies, MDPI, vol. 9(5), pages 1-15, April.
    16. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    17. Brignoli, Riccardo & Brown, J. Steven, 2015. "Organic Rankine cycle model for well-described and not-so-well-described working fluids," Energy, Elsevier, vol. 86(C), pages 93-104.
    18. Palma-Flores, Oscar & Flores-Tlacuahuac, Antonio & Canseco-Melchorb, Graciela, 2016. "Simultaneous molecular and process design for waste heat recovery," Energy, Elsevier, vol. 99(C), pages 32-47.
    19. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    20. Preißinger, Markus & Schwöbel, Johannes A.H. & Klamt, Andreas & Brüggemann, Dieter, 2017. "Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks," Applied Energy, Elsevier, vol. 206(C), pages 887-899.
    21. Su, Wen & Zhao, Li & Deng, Shuai, 2017. "Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model," Applied Energy, Elsevier, vol. 202(C), pages 618-627.
    22. Markides, Christos N. & Osuolale, Adebayo & Solanki, Roochi & Stan, Guy-Bart V., 2013. "Nonlinear heat transfer processes in a two-phase thermofluidic oscillator," Applied Energy, Elsevier, vol. 104(C), pages 958-977.
    23. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    24. Fischer, Johann, 2011. "Comparison of trilateral cycles and organic Rankine cycles," Energy, Elsevier, vol. 36(10), pages 6208-6219.
    25. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    26. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    27. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    28. Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
    29. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    30. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    31. Markides, Christos N. & Smith, Thomas C.B., 2011. "A dynamic model for the efficiency optimization of an oscillatory low grade heat engine," Energy, Elsevier, vol. 36(12), pages 6967-6980.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Taotao & Chen, Yuhang & Dong, Ao & He, Maogang & Zhang, Ying, 2023. "Intrinsic-group-contribution PC-SAFT and its application in performance analysis of high-temperature organic Rankine cycle with siloxanes and alkanes," Energy, Elsevier, vol. 278(PA).
    2. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    3. Morais, Pedro Henrique da Silva & Lodi, Andressa & Aoki, Adriana Cristine & Modesto, Marcelo, 2020. "Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant," Renewable Energy, Elsevier, vol. 157(C), pages 1131-1147.
    4. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Luo, Xianglong & Wang, Yupeng & Liang, Junwei & Qi, Ji & Su, Wen & Yang, Zhi & Chen, Jianyong & Wang, Chao & Chen, Ying, 2019. "Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical Organic Rankine Cycle," Energy, Elsevier, vol. 174(C), pages 122-137.
    7. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    8. Aziz, Faraz & Salim, Mohammad Saad & Kim, Man-Hoe, 2019. "Performance analysis of high temperature cascade organic Rankine cycle coupled with water heating system," Energy, Elsevier, vol. 170(C), pages 954-966.
    9. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    10. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    11. Schilling, J. & Entrup, M. & Hopp, M. & Gross, J. & Bardow, A., 2021. "Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic Rankine Cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Dokl, Monika & Gomilšek, Rok & Čuček, Lidija & Abikoye, Ben & Kravanja, Zdravko, 2022. "Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry," Energy, Elsevier, vol. 239(PE).
    13. Kumar, Thanikasalam & Mohsin, Rahmat & Majid, Zulkifli Abd. & Ghafir, Mohammad Fahmi Abdul & Wash, Ananth Manickam, 2020. "Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology," Applied Energy, Elsevier, vol. 259(C).
    14. Zhao, Dongpeng & Deng, Shuai & Zhao, Li & Xu, Weicong & Zhao, Ruikai & Wang, Wei, 2020. "From 1 to N: A computer-aided case study of thermodynamic cycle construction based on thermodynamic process combination," Energy, Elsevier, vol. 210(C).
    15. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    16. Simpson, Michael C. & Chatzopoulou, Maria Anna & Oyewunmi, Oyeniyi A. & Le Brun, Niccolo & Sapin, Paul & Markides, Christos N., 2019. "Technoeconomic analysis of internal combustion engine – organic Rankine cycle systems for combined heat and power in energy-intensive buildings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Liu, Changwei & Gao, Tieyu, 2019. "Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy," Energy, Elsevier, vol. 171(C), pages 95-108.
    18. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Jovell, Daniel & Gonzalez-Olmos, Rafael & Llovell, Fèlix, 2022. "A computational drop-in assessment of hydrofluoroethers in Organic Rankine Cycles," Energy, Elsevier, vol. 254(PB).
    20. Zhang, Bo & Wang, Enhua & Meng, Fanxiao & Zhang, Fujun & Zhao, Changlu, 2020. "Prediction accuracy of thermodynamic properties using PC-SAFT for high-temperature organic Rankine cycle with siloxanes," Energy, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    3. Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.
    4. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    5. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
    6. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
    8. Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
    9. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
    10. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    11. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Simpson, Michael C. & Chatzopoulou, Maria Anna & Oyewunmi, Oyeniyi A. & Le Brun, Niccolo & Sapin, Paul & Markides, Christos N., 2019. "Technoeconomic analysis of internal combustion engine – organic Rankine cycle systems for combined heat and power in energy-intensive buildings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    14. Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
    15. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    16. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    17. Schilling, J. & Entrup, M. & Hopp, M. & Gross, J. & Bardow, A., 2021. "Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic Rankine Cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Ramos, Alba & Chatzopoulou, Maria Anna & Freeman, James & Markides, Christos N., 2018. "Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment," Applied Energy, Elsevier, vol. 228(C), pages 755-765.
    19. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    20. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:1181-1198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.