IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3197-d259320.html
   My bibliography  Save this article

Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander

Author

Listed:
  • Xinxin Zhang

    (MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yin Zhang

    (MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Min Cao

    (MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Jingfu Wang

    (MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yuting Wu

    (MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Chongfang Ma

    (MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

The organic Rankine cycle (ORC) is a popular technology used in waste heat recovery and medium-low-temperature heat utilization. Working fluid plays a very important role in ORC. The selection of working fluid can greatly affect the efficiency, the operation condition, the impact on the environment, and the economic feasibility of ORC. The expander is a key device in ORC. As a novel expander, single-screw expanders have been becoming a research focus in the above two areas because of their many good characteristics. One of the advantages of single-screw configurations is that they can conduct a vapor–liquid two-phase expansion. Therefore, in order to give full play to this advantage, a working fluid selection for ORC using a single-screw expander was conducted in this paper. Three indicators, namely, net work output, thermal efficiency, and heat exchange load of condenser, were used to analyze the performance of an ORC system. Through calculation and analysis, it can be seen that an ORC system that uses a single-screw expander and undergoes a vapor–liquid two-phase expansion is able to obtain a higher thermal efficiency, higher net work output, and a smaller heat exchange load of the condenser. Regardless of whether isentropic efficiency of the expander is considered or not, cis-butene may be the best candidate for working in subcritical cycles. HFO working fluids are more suitable for working in transcritical cycles, and HFO-1234ze(E) may be the best.

Suggested Citation

  • Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3197-:d:259320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dumont, Olivier & Parthoens, Antoine & Dickes, Rémi & Lemort, Vincent, 2018. "Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system," Energy, Elsevier, vol. 165(PA), pages 1119-1127.
    2. Lu, Yuanwei & He, Wei & Wu, Yuting & Ji, Weining & Ma, Chongfang & Guo, Hang, 2013. "Performance study on compressed air refrigeration system based on single screw expander," Energy, Elsevier, vol. 55(C), pages 762-768.
    3. Desideri, Adriano & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications," Energy, Elsevier, vol. 97(C), pages 460-469.
    4. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2016. "Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery," Applied Energy, Elsevier, vol. 181(C), pages 155-170.
    5. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    6. Zhang, Ye-Qiang & Wu, Yu-Ting & Xia, Guo-Dong & Ma, Chong-Fang & Ji, Wei-Ning & Liu, Shan-Wei & Yang, Kai & Yang, Fu-Bin, 2014. "Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine," Energy, Elsevier, vol. 77(C), pages 499-508.
    7. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    8. Zhang, Xinxin & He, Maogang & Wang, Jingfu, 2014. "A new method used to evaluate organic working fluids," Energy, Elsevier, vol. 67(C), pages 363-369.
    9. Shen, Lili & Wang, Wei & Wu, Yuting & Lei, Biao & Zhi, Ruiping & Lu, Yuanwei & Wang, Jingfu & Ma, Chongfang, 2018. "A study of clearance height on the performance of single-screw expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 153(C), pages 45-55.
    10. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    11. Györke, Gábor & Deiters, Ulrich K. & Groniewsky, Axel & Lassu, Imre & Imre, Attila R., 2018. "Novel classification of pure working fluids for Organic Rankine Cycle," Energy, Elsevier, vol. 145(C), pages 288-300.
    12. Lei, Biao & Wang, Wei & Wu, Yu-Ting & Ma, Chong-Fang & Wang, Jing-Fu & Zhang, Lei & Li, Chuang & Zhao, Ying-Kun & Zhi, Rui-Ping, 2016. "Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle," Energy, Elsevier, vol. 116(P1), pages 43-52.
    13. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    14. Zhai, Huixing & Shi, Lin & An, Qingsong, 2014. "Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 74(C), pages 2-11.
    15. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    16. Yang, Jingye & Ye, Zhenhong & Yu, Binbin & Ouyang, Hongsheng & Chen, Jiangping, 2019. "Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)," Energy, Elsevier, vol. 173(C), pages 721-731.
    17. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    18. Attila R. Imre & Réka Kustán & Axel Groniewsky, 2019. "Thermodynamic Selection of the Optimal Working Fluid for Organic Rankine Cycles," Energies, MDPI, vol. 12(10), pages 1-15, May.
    19. Le, Van Long & Feidt, Michel & Kheiri, Abdelhamid & Pelloux-Prayer, Sandrine, 2014. "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids," Energy, Elsevier, vol. 67(C), pages 513-526.
    20. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    21. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    22. Ayachi, Fadhel & Boulawz Ksayer, Elias & Zoughaib, Assaad & Neveu, Pierre, 2014. "ORC optimization for medium grade heat recovery," Energy, Elsevier, vol. 68(C), pages 47-56.
    23. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    24. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xinxin & Zhang, Yin & Wang, Jingfu, 2020. "New classification of dry and isentropic working fluids and a method used to determine their optimal or worst condensation temperature used in Organic Rankine Cycle," Energy, Elsevier, vol. 201(C).
    2. Qiang Liu & Ran Chen & Xinliu Yang & Xiao Xiao, 2023. "Thermodynamic Analyses of Sub- and Supercritical ORCs Using R1234yf, R236ea and Their Mixtures as Working Fluids for Geothermal Power Generation," Energies, MDPI, vol. 16(15), pages 1-22, July.
    3. Savvas L. Douvartzides & Aristidis Tsiolikas & Nikolaos D. Charisiou & Manolis Souliotis & Vayos Karayannis & Nikolaos Taousanidis, 2022. "Energy and Exergy-Based Screening of Various Refrigerants, Hydrocarbons and Siloxanes for the Optimization of Biomass Boiler–Organic Rankine Cycle (BB–ORC) Heat and Power Cogeneration Plants," Energies, MDPI, vol. 15(15), pages 1-26, July.
    4. Piotr Kolasiński, 2020. "Domestic Organic Rankine Cycle-Based Cogeneration Systems as a Way to Reduce Dust Emissions in Municipal Heating," Energies, MDPI, vol. 13(15), pages 1-22, August.
    5. Yuan Zhao & Chenghao Gao & Chengjun Li & Jie Sun & Chunyan Wang & Qiang Liu & Jun Zhao, 2022. "Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature," Energies, MDPI, vol. 15(17), pages 1-20, August.
    6. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    7. Zhen Tian & Yingying Yue & Yuan Zhang & Bo Gu & Wenzhong Gao, 2020. "Multi-Objective Thermo-Economic Optimization of a Combined Organic Rankine Cycle (ORC) System Based on Waste Heat of Dual Fuel Marine Engine and LNG Cold Energy Recovery," Energies, MDPI, vol. 13(6), pages 1-23, March.
    8. Ambra Giovannelli & Erika Maria Archilei & Coriolano Salvini, 2020. "Two-Stage Radial Turbine for a Small Waste Heat Recovery Organic Rankine Cycle (ORC) Plant," Energies, MDPI, vol. 13(5), pages 1-17, February.
    9. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    10. Wang, Enhua & Mao, Jingwen & Zhang, Bo & Wang, Yongzhen, 2023. "On the CAMD method based on PC-SAFT for working fluid design of a high-temperature organic Rankine cycle," Energy, Elsevier, vol. 263(PD).
    11. Kisorthman Vimalakanthan & Matthew Read & Ahmed Kovacevic, 2020. "Numerical Modelling and Experimental Validation of Twin-Screw Expanders," Energies, MDPI, vol. 13(18), pages 1-13, September.
    12. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.
    13. Al-Sayyab, Ali Khalid Shaker & Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín, 2023. "Performance evaluation of modified compound organic Rankine-vapour compression cycle with two cooling levels, heating, and power generation," Applied Energy, Elsevier, vol. 334(C).
    14. Casari, Nicola & Fadiga, Ettore & Pinelli, Michele & Randi, Saverio & Suman, Alessio & Ziviani, Davide, 2020. "Investigation of flow characteristics in a single screw expander: A numerical approach," Energy, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.
    2. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    3. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    4. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    5. Shen, Lili & Wang, Wei & Wu, Yuting & Lei, Biao & Zhi, Ruiping & Lu, Yuanwei & Wang, Jingfu & Ma, Chongfang, 2018. "A study of clearance height on the performance of single-screw expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 153(C), pages 45-55.
    6. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    7. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    8. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    9. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    11. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    12. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    13. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    14. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    15. Kazemi, Shabnam & Nor, Mohamad Iskandr Mohamad & Teoh, Wen Hui, 2020. "Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production," Energy, Elsevier, vol. 193(C).
    16. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    17. Giuffrida, Antonio, 2018. "A theoretical study on the performance of a scroll expander in an organic Rankine cycle with hydrofluoroolefins (HFOs) in place of R245fa," Energy, Elsevier, vol. 161(C), pages 1172-1180.
    18. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    19. Sarkar, Jahar & Bhattacharyya, Souvik, 2015. "Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study," Energy, Elsevier, vol. 90(P2), pages 1618-1625.
    20. Xu, Heng & Gao, Naiping & Zhu, Tong, 2016. "Investigation on the fluid selection and evaporation parametric optimization for sub- and supercritical organic Rankine cycle," Energy, Elsevier, vol. 96(C), pages 59-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3197-:d:259320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.