IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v261y2020ics0306261919320823.html
   My bibliography  Save this article

Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors

Author

Listed:
  • Li, Xiaoqiong
  • Wang, Xiaoyan
  • Zhang, Yufeng
  • Fang, Lei
  • Deng, Na
  • Zhang, Yan
  • Jin, Zhendong
  • Yu, Xiaohui
  • Yao, Sheng

Abstract

The research of the high-temperature heat pump compressors above 100 °C has brought great challenges by its detection system, and in this study, a novel ejector-based detection system has been proposed to measure the thermodynamic performance of the heat pump compressors. The paper began with a numerical method to design the nozzle and diffuser of the ejector. Compared with the results of gas dynamics calculation, the deviations of nozzle and the diffuser were lower than 10.38% and 3.38%, respectively. Furthermore, the compressor performance was analyzed at the suction temperature in the range of 90–110 °C while the speed in the range of 2820–3060 r/min. The results showed that the compression ratio varied from 2.3 to 2.7, and the volumetric efficiency as well as isentropic efficiency was 90% and 70%, respectively. Assuming that the compressor was used in a heat pump system at the same operating condition, it was noteworthy that the highest discharge temperature was 184.8 °C and the coefficient of performance was more than 3.9. In an actual case, the initial investment cost of the ejector-based detection system is 3311 $, while that of the heat pump detection system is 59,795 $, the economical saving can reach to 94.5%. This is due to the exchanger has been omitted in ejector-based detection system compared with the traditional heat pump detection system. All in all, the novel system was reliable and economical.

Suggested Citation

  • Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320823
    DOI: 10.1016/j.apenergy.2019.114395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919320823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    2. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    3. Jafarian, Ali & Azizi, Mohammad & Forghani, Pezhman, 2016. "Experimental and numerical investigation of transient phenomena in vacuum ejectors," Energy, Elsevier, vol. 102(C), pages 528-536.
    4. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    5. Farshi, L. Garousi & Khalili, S., 2019. "Thermoeconomic analysis of a new ejector boosted hybrid heat pump (EBHP) and comparison with three conventional types of heat pumps," Energy, Elsevier, vol. 170(C), pages 619-635.
    6. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
    7. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    8. Metin, Cagri & Gök, Okan & Atmaca, Ayşe Uğurcan & Erek, Aytunç, 2019. "Numerical investigation of the flow structures inside mixing section of the ejector," Energy, Elsevier, vol. 166(C), pages 1216-1228.
    9. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    10. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    11. Varga, Zoltán & Palotai, Balázs, 2017. "Comparison of low temperature waste heat recovery methods," Energy, Elsevier, vol. 137(C), pages 1286-1292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhangxiang & Wang, Xiaoyan & Sha, Li & Li, Xiaoqiong & Yang, Xiaochen & Ma, Xuelian & Zhang, Yufeng, 2021. "Performance analysis and multi-objective optimization of the high-temperature cascade heat pump system," Energy, Elsevier, vol. 223(C).
    2. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    2. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    3. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    5. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    6. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    7. Wang, Jiong & Xu, Shuangjie & Cheng, Huaiyu & Ji, Bin & Zhang, Junqiang & Long, Xinping, 2018. "Experimental investigation of cavity length pulsation characteristics of jet pumps during limited operation stage," Energy, Elsevier, vol. 163(C), pages 61-73.
    8. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Elsa Klinac & James Kenneth Carson & Duy Hoang & Qun Chen & Donald John Cleland & Timothy Gordon Walmsley, 2023. "Multi-Level Process Integration of Heat Pumps in Meat Processing," Energies, MDPI, vol. 16(8), pages 1-16, April.
    10. Tan, Zhimin & Feng, Xiao & Wang, Yufei, 2021. "Performance comparison of different heat pumps in low-temperature waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    12. Bai, Tao & Yan, Gang & Yu, Jianlin, 2022. "Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer," Energy, Elsevier, vol. 238(PC).
    13. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    14. Lixing Zheng & Hongwei Hu & Weibo Wang & Yiyan Zhang & Lingmei Wang, 2022. "Study on Flow Distribution and Structure Optimization in a Mix Chamber and Diffuser of a CO 2 Two-Phase Ejector," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
    15. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
    16. Yecid Muñoz-Maldonado & Edgar Correa-Quintana & Adalberto Ospino-Castro, 2023. "Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources," Energies, MDPI, vol. 16(19), pages 1-20, September.
    17. Hafiz Ali Muhammad & Hafiz Muhammad Abdullah & Zabdur Rehman & Beomjoon Lee & Young-Jin Baik & Jongjae Cho & Muhammad Imran & Manzar Masud & Mohsin Saleem & Muhammad Shoaib Butt, 2020. "Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System," Energies, MDPI, vol. 13(21), pages 1-19, November.
    18. Hu, Bin & Liu, Hua & Jiang, Jiatong & Zhang, Zhiping & Li, Hongbo & Wang, R.Z., 2022. "Ten megawatt scale vapor compression heat pump for low temperature waste heat recovery: Onsite application research," Energy, Elsevier, vol. 238(PB).
    19. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    20. Jianmei Feng & Jiquan Han & Zihui Pang & Xueyuan Peng, 2023. "Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 16(3), pages 1-10, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.