IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v121y2014icp96-103.html
   My bibliography  Save this article

Performance characteristics of R1234yf ejector-expansion refrigeration cycle

Author

Listed:
  • Li, Huashan
  • Cao, Fei
  • Bu, Xianbiao
  • Wang, Lingbao
  • Wang, Xianlong

Abstract

With a constant-pressure mixing ejector, the performance characteristics of an ejector-expansion refrigeration cycle (EERC) using R1234yf as refrigerant have been investigated. Also, the performance of R1234yf and R134a in the EERC has been compared. The study shows that, at condensing temperature of 40°C and evaporation temperature of 5°C, the coefficient of performance (COP) and volumetric cooling capacity (VCC) of the R1234yf EERC peak up to 5.91 and 2590.76kJ/m3, respectively. Compared with the standard refrigeration cycle the R1234yf EERC generally has a better performance, especially at the condition of higher condensing temperature and lower evaporation temperature. The COP and VCC improvements of the R1234yf EERC over the standard refrigeration cycle are also greater than that of the R134a cycle. In addition, the ejector design parameters including the pressure drop in suction nozzle, area ratio and component efficiencies on the R1234yf EERC performance have been analyzed.

Suggested Citation

  • Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
  • Handle: RePEc:eee:appene:v:121:y:2014:i:c:p:96-103
    DOI: 10.1016/j.apenergy.2014.01.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914001093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.01.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    2. Sumeru, K. & Nasution, H. & Ani, F.N., 2012. "A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4927-4937.
    3. Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
    4. Garousi Farshi, L. & Mahmoudi, S.M.S. & Rosen, M.A., 2013. "Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 103(C), pages 700-711.
    5. Levy, A. & Jelinek, M. & Borde, I., 2002. "Numerical study on the design parameters of a jet ejector for absorption systems," Applied Energy, Elsevier, vol. 72(2), pages 467-478, June.
    6. Jelinek, M. & Levy, A. & Borde, I., 2002. "Performance of a triple-pressure-level absorption cycle with R125-N,N'-dimethylethylurea," Applied Energy, Elsevier, vol. 71(3), pages 171-189, March.
    7. Han, Wei & Sun, Liuli & Zheng, Danxing & Jin, Hongguang & Ma, Sijun & Jing, Xuye, 2013. "New hybrid absorption–compression refrigeration system based on cascade use of mid-temperature waste heat," Applied Energy, Elsevier, vol. 106(C), pages 383-390.
    8. Sarkar, Jahar, 2008. "Optimization of ejector-expansion transcritical CO2 heat pump cycle," Energy, Elsevier, vol. 33(9), pages 1399-1406.
    9. Park, Ki-Jung & Seo, Taebeom & Jung, Dongsoo, 2007. "Performance of alternative refrigerants for residential air-conditioning applications," Applied Energy, Elsevier, vol. 84(10), pages 985-991, October.
    10. Gazda, Wiesław & Kozioł, Joachim, 2013. "The estimation of energy efficiency for hybrid refrigeration system," Applied Energy, Elsevier, vol. 101(C), pages 49-57.
    11. Chen, Xiangjie & Worall, Mark & Omer, Siddig & Su, Yuehong & Riffat, Saffa, 2013. "Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle," Applied Energy, Elsevier, vol. 102(C), pages 931-942.
    12. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Tarani, Fabio, 2012. "Suitability of coupling a solar powered ejection cycle with a vapour compression refrigerating machine," Applied Energy, Elsevier, vol. 97(C), pages 374-383.
    13. Zilio, Claudio & Brown, J. Steven & Schiochet, Giovanni & Cavallini, Alberto, 2011. "The refrigerant R1234yf in air conditioning systems," Energy, Elsevier, vol. 36(10), pages 6110-6120.
    14. Chen, Li-Ting, 1988. "A new ejector-absorber cycle to improve the COP of an absorption refrigeration system," Applied Energy, Elsevier, vol. 30(1), pages 37-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    2. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    3. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    4. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    5. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    6. Garousi Farshi, L. & Mosaffa, A.H. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Thermodynamic analysis and comparison of combined ejector–absorption and single effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 133(C), pages 335-346.
    7. Jeon, Yongseok & Jung, Jongho & Kim, Dongwoo & Kim, Sunjae & Kim, Yongchan, 2017. "Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor," Applied Energy, Elsevier, vol. 205(C), pages 761-768.
    8. Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
    9. Megdouli, K. & Ejemni, N. & Nahdi, E. & Mhimid, A. & Kairouani, L., 2017. "Thermodynamic analysis of a novel ejector expansion transcritical CO2/N2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures," Energy, Elsevier, vol. 128(C), pages 586-600.
    10. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    11. Chen, Weixiong & Shi, Chaoyin & Zhang, Shuangping & Chen, Huiqiang & Chong, Daotong & Yan, Junjie, 2017. "Theoretical analysis of ejector refrigeration system performance under overall modes," Applied Energy, Elsevier, vol. 185(P2), pages 2074-2084.
    12. Wang, Xiao & Yu, Jianlin & Zhou, Mengliu & Lv, Xiaolong, 2014. "Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers," Energy, Elsevier, vol. 70(C), pages 635-642.
    13. Yang, Mina & Jung, Chung Woo & Kang, Yong Tae, 2015. "Development of high efficiency cycles for domestic refrigerator-freezer application," Energy, Elsevier, vol. 93(P2), pages 2258-2266.
    14. Sözen, Adnan & Yücesu, H. Serdar, 2007. "Performance improvement of absorption heat transformer," Renewable Energy, Elsevier, vol. 32(2), pages 267-284.
    15. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    16. Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michal & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "System model derivation of the CO2 two-phase ejector based on the CFD-based reduced-order model," Energy, Elsevier, vol. 144(C), pages 941-956.
    17. Levy, A. & Jelinek, M. & Borde, I., 2002. "Numerical study on the design parameters of a jet ejector for absorption systems," Applied Energy, Elsevier, vol. 72(2), pages 467-478, June.
    18. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    19. Yari, Mortaza & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Thermodynamic analysis and optimization of a novel dual-evaporator system powered by electrical and solar energy sources," Energy, Elsevier, vol. 61(C), pages 646-656.
    20. Yari, M. & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Simulation study of the combination of absorption refrigeration and ejector-expansion systems," Renewable Energy, Elsevier, vol. 60(C), pages 370-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:121:y:2014:i:c:p:96-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.