IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp528-536.html
   My bibliography  Save this article

Experimental and numerical investigation of transient phenomena in vacuum ejectors

Author

Listed:
  • Jafarian, Ali
  • Azizi, Mohammad
  • Forghani, Pezhman

Abstract

In the present work the transient behavior of ejectors is explored experimentally and numerically. The main goal is to achieve an appropriate numerical model for predicting transient phenomena in ejectors. To validate the numerical results, an experimental test rig was built up and a set of experiments was performed. Results showed a good agreement between experiments and numerical simulations and the average deviation of about 16 percent was achieved. Furthermore, employing the validated numerical model a vacuum steam ejector was simulated numerically. Two different linear motive flow pressure profiles were applied to simulate the ejector performance. Results showed that as the slope of the motive flow pressure profile increases as much as twice, the maximum flow rate of suction increases by 40% and the corresponding incidence time decreases.

Suggested Citation

  • Jafarian, Ali & Azizi, Mohammad & Forghani, Pezhman, 2016. "Experimental and numerical investigation of transient phenomena in vacuum ejectors," Energy, Elsevier, vol. 102(C), pages 528-536.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:528-536
    DOI: 10.1016/j.energy.2016.02.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yinhai & Jiang, Peixue, 2014. "Bypass ejector with an annular cavity in the nozzle wall to increase the entrainment: Experimental and numerical validation," Energy, Elsevier, vol. 68(C), pages 174-181.
    2. Reddick, Christopher & Sorin, Mikhail & Rheault, Fernand, 2014. "Energy savings in CO2 (carbon dioxide) capture using ejectors for waste heat upgrading," Energy, Elsevier, vol. 65(C), pages 200-208.
    3. Chong, Daotong & Hu, Mengqi & Chen, Weixiong & Wang, Jinshi & Liu, Jiping & Yan, Junjie, 2014. "Experimental and numerical analysis of supersonic air ejector," Applied Energy, Elsevier, vol. 130(C), pages 679-684.
    4. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    5. Sharifi, Navid & Sharifi, Majid, 2014. "Reducing energy consumption of a steam ejector through experimental optimization of the nozzle geometry," Energy, Elsevier, vol. 66(C), pages 860-867.
    6. Wang, Xiaodong & Dong, Jingliang & Li, Ao & Lei, Hongjian & Tu, Jiyuan, 2014. "Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance," Energy, Elsevier, vol. 78(C), pages 205-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    2. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    3. Llorenç Macia & Robert Castilla & Pedro Javier Gamez-Montero & Gustavo Raush, 2022. "Multi-Factor Design for a Vacuum Ejector Improvement by In-Depth Analysis of Construction Parameters," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    4. Wang, Jiong & Xu, Shuangjie & Cheng, Huaiyu & Ji, Bin & Zhang, Junqiang & Long, Xinping, 2018. "Experimental investigation of cavity length pulsation characteristics of jet pumps during limited operation stage," Energy, Elsevier, vol. 163(C), pages 61-73.
    5. Ll Macia & R. Castilla & P. J. Gamez-Montero & S. Camacho & E. Codina, 2019. "Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam," Energies, MDPI, vol. 12(18), pages 1-17, September.
    6. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    7. Zhang, Shaozhi & Luo, Jielin & Wang, Qin & Chen, Guangming, 2018. "Step utilization of energy with ejector in a heat driven freeze drying system," Energy, Elsevier, vol. 164(C), pages 734-744.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Zheng, Ping & Li, Bing & Qin, Jingxuan, 2018. "CFD simulation of two-phase ejector performance influenced by different operation conditions," Energy, Elsevier, vol. 155(C), pages 1129-1145.
    3. Shan, Yong & Zhang, Jing-zhou & Ren, Xiao-wen, 2018. "Numerical modeling on pumping performance of piccolo-tube multi-nozzles supersonic ejector in an oil radiator passage," Energy, Elsevier, vol. 158(C), pages 216-227.
    4. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    5. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    6. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    7. Tang, Yongzhi & Liu, Zhongliang & Shi, Can & Li, Yanxia, 2018. "A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system," Energy, Elsevier, vol. 158(C), pages 305-316.
    8. Han, Yu & Wang, Xiaodong & Sun, Hao & Zhang, Guangli & Guo, Lixin & Tu, Jiyuan, 2019. "CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance," Energy, Elsevier, vol. 167(C), pages 469-483.
    9. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    10. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    11. Jingming Dong & Weining Wang & Zhitao Han & Hongbin Ma & Yangbo Deng & Fengmin Su & Xinxiang Pan, 2018. "Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source," Energies, MDPI, vol. 11(9), pages 1-13, August.
    12. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    13. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    14. Engin Söylemez, 2024. "Energy and Conventional Exergy Analysis of an Integrated Transcritical CO 2 (R-744) Refrigeration System," Energies, MDPI, vol. 17(2), pages 1-15, January.
    15. Li, Fenglei & Wu, Changzhi & Wang, Xiangyu & Tian, Qi & Teo, Kok Lay, 2016. "Sparsity-enhanced optimization for ejector performance prediction," Energy, Elsevier, vol. 113(C), pages 25-34.
    16. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    17. Jie Wang & Hongfang Gu, 2021. "A Study of Moist Air Condensation Characteristics in a Transonic Flow System," Energies, MDPI, vol. 14(13), pages 1-12, July.
    18. Li, Fenglei & Chang, Zhao & Li, Xinchang & Tian, Qi, 2018. "Energy and exergy analyses of a solar-driven ejector-cascade heat pump cycle," Energy, Elsevier, vol. 165(PB), pages 419-431.
    19. Chen, Hongjie & Zhu, Jiahua & Ge, Jing & Lu, Wei & Zheng, Lixing, 2020. "A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position," Energy, Elsevier, vol. 208(C).
    20. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:528-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.