IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p479-d1321934.html
   My bibliography  Save this article

Energy and Conventional Exergy Analysis of an Integrated Transcritical CO 2 (R-744) Refrigeration System

Author

Listed:
  • Engin Söylemez

    (Process and Power Research Group Trondheim, Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7194 Trondheim, Norway)

Abstract

This study analyses the performance of an integrated transcritical CO 2 (R-744) refrigeration system operating in winter conditions within a supermarket in Trento, north Italy. This system fulfils multiple functions, providing the heating (for domestic hot water and space heating), cooling, and freezing capabilities for the supermarket. Energy analysis reveals that the average value of the total coefficient of performance, total COP, over the entire study period is calculated at 2.47. Notably, the medium-temperature (MT) compressor rack exhibits the highest power consumption, especially in sub −5 °C conditions. The auxiliary (AUX) compressor rack and the gas cooler (GC) fan contribute significantly to the electrical power usage. The air conditioning (AC) heating load is consistently high, averaging 41.6 kW, while the domestic hot water (DHW) heating load remains stable at approximately 5 kW. The refrigeration demands include an average MT cooling load of 25.86 kW and a low-temperature (LT) freezing load of 10–15 kW, with an average of 13.76 kW. The current study also delves into exergy analysis, disclosing an overall system exergy efficiency of 22.4%. The AUX compressor rack is identified as the primary exergy destructor, followed by the GC, AC coils, MT compressor rack, and the ejector. The LT compressor rack has the highest exergy efficiency, followed by the MT and LT expansion valves.

Suggested Citation

  • Engin Söylemez, 2024. "Energy and Conventional Exergy Analysis of an Integrated Transcritical CO 2 (R-744) Refrigeration System," Energies, MDPI, vol. 17(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:479-:d:1321934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    2. Chen, Jianyong & Havtun, Hans & Palm, Björn, 2015. "Conventional and advanced exergy analysis of an ejector refrigeration system," Applied Energy, Elsevier, vol. 144(C), pages 139-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Liu, Shuilong & Bai, Tao & Wei, Yuan & Yu, Jianlin, 2023. "Performance analysis of a modified ejector-enhanced auto-cascade refrigeration cycle," Energy, Elsevier, vol. 265(C).
    3. Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
    4. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    5. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    6. Gullo, Paride & Elmegaard, Brian & Cortella, Giovanni, 2016. "Advanced exergy analysis of a R744 booster refrigeration system with parallel compression," Energy, Elsevier, vol. 107(C), pages 562-571.
    7. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    8. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    9. Khennich, Mohammed & Galanis, Nicolas & Sorin, Mikhail, 2016. "Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems," Applied Energy, Elsevier, vol. 179(C), pages 1020-1031.
    10. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    11. Zhong, Xiaohui & Chen, Tao & Sun, Xiangyu & Song, Juanjuan & Zeng, Jiajun, 2022. "Conventional and advanced exergy analysis of a novel wind-to-heat system," Energy, Elsevier, vol. 261(PA).
    12. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    13. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    14. Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
    15. Li, Fenglei & Chang, Zhao & Li, Xinchang & Tian, Qi, 2018. "Energy and exergy analyses of a solar-driven ejector-cascade heat pump cycle," Energy, Elsevier, vol. 165(PB), pages 419-431.
    16. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    17. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    18. Chen, Weixiong & Shi, Chaoyin & Zhang, Shuangping & Chen, Huiqiang & Chong, Daotong & Yan, Junjie, 2017. "Theoretical analysis of ejector refrigeration system performance under overall modes," Applied Energy, Elsevier, vol. 185(P2), pages 2074-2084.
    19. Zhongbao Liu & Fengfei Lou & Xin Qi & Yiyao Shen, 2020. "Enhancing Heating Performance of Low-Temperature Air Source Heat Pumps Using Compressor Casing Thermal Storage," Energies, MDPI, vol. 13(12), pages 1-18, June.
    20. Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:479-:d:1321934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.