A Study of Moist Air Condensation Characteristics in a Transonic Flow System
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
- Zhang, Guojie & Zhang, Xinzhe & Wang, Fangfang & Wang, Dingbiao & Jin, Zunlong & Zhou, Zhongning, 2019. "Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade," Energy, Elsevier, vol. 187(C).
- Han, Yu & Wang, Xiaodong & Sun, Hao & Zhang, Guangli & Guo, Lixin & Tu, Jiyuan, 2019. "CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance," Energy, Elsevier, vol. 167(C), pages 469-483.
- Tang, Yongzhi & Liu, Zhongliang & Shi, Can & Li, Yanxia, 2018. "A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system," Energy, Elsevier, vol. 158(C), pages 305-316.
- Xu Han & Zhonghe Han & Wei Zeng & Jiangbo Qian & Zhi Wang, 2017. "Coupled Model of Heat and Mass Balance for Droplet Growth in Wet Steam Non-Equilibrium Homogeneous Condensation Flow," Energies, MDPI, vol. 10(12), pages 1-12, December.
- P. Wiśniewski & S. Dykas & S. Yamamoto, 2020. "Importance of Air Humidity and Contaminations in the Internal and External Transonic Flows," Energies, MDPI, vol. 13(12), pages 1-12, June.
- Sharifi, Navid & Sharifi, Majid, 2014. "Reducing energy consumption of a steam ejector through experimental optimization of the nozzle geometry," Energy, Elsevier, vol. 66(C), pages 860-867.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Majkut, Mirosław & Smołka, Krystian & Dykas, Sławomir, 2023. "Effect of relative humidity on the nozzle performance in non-equilibrium condensing flows for improving the compressed air energy storage technology," Energy, Elsevier, vol. 280(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
- Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
- Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
- Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
- Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
- Piotr Wiśniewski & Guojie Zhang & Sławomir Dykas, 2022. "Numerical Investigation of the Influence of Air Contaminants on the Interfacial Heat Transfer in Transonic Flow in a Compressor Rotor," Energies, MDPI, vol. 15(12), pages 1-21, June.
- Liu, Yang & Cao, Xuewen & Guo, Dan & Cao, Hengguang & Bian, Jiang, 2023. "Influence of shock wave/boundary layer interaction on condensation flow and energy recovery in supersonic nozzle," Energy, Elsevier, vol. 263(PA).
- Wen, Chuang & Gong, Liang & Ding, Hongbing & Yang, Yan, 2020. "Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system," Applied Energy, Elsevier, vol. 279(C).
- Yang, Yan & Karvounis, Nikolas & Walther, Jens Honore & Ding, Hongbing & Wen, Chuang, 2021. "Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations," Energy, Elsevier, vol. 237(C).
- Bian, Jiang & Cao, Xuewen & Teng, Lin & Sun, Yuan & Gao, Song, 2019. "Effects of inlet parameters on the supersonic condensation and swirling characteristics of binary natural gas mixture," Energy, Elsevier, vol. 188(C).
- Tang, Yongzhi & Yuan, Jiali & Liu, Zhongliang & Feng, Qing & Gong, Xiaolong & Lu, Lin & Chua, Kian Jon, 2022. "Study on evolution laws of two-phase choking flow and entrainment performance of steam ejector oriented towards MED-TVC desalination system," Energy, Elsevier, vol. 242(C).
- Jingming Dong & Weining Wang & Zhitao Han & Hongbin Ma & Yangbo Deng & Fengmin Su & Xinxiang Pan, 2018. "Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source," Energies, MDPI, vol. 11(9), pages 1-13, August.
- Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
- Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
- Han, Xu & Zeng, Wei & Han, Zhonghe, 2019. "Investigation of the comprehensive performance of turbine stator cascades with heating endwall fences," Energy, Elsevier, vol. 174(C), pages 1188-1199.
- Zhang, Guojie & Wang, Xiaogang & Chen, Jiaheng & Tang, Songzhen & Smołka, Krystian & Majkut, Mirosław & Jin, Zunlong & Dykas, Sławomir, 2023. "Supersonic nozzle performance prediction considering the homogeneous-heterogeneous coupling spontaneous non-equilibrium condensation," Energy, Elsevier, vol. 284(C).
- Hu, Pengfei & Liang, Qi & Fan, Tiantian & Wang, Yanhong & Li, Qi, 2024. "Investigation of heterogeneous condensation flow characteristics in the steam turbine based on homogeneous-heterogeneous condensation coupling model using OpenFOAM," Energy, Elsevier, vol. 296(C).
- Chen, Hongjie & Zhu, Jiahua & Ge, Jing & Lu, Wei & Zheng, Lixing, 2020. "A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position," Energy, Elsevier, vol. 208(C).
- Yan Yang & Haoping Peng & Chuang Wen, 2019. "Sand Transport and Deposition Behaviour in Subsea Pipelines for Flow Assurance," Energies, MDPI, vol. 12(21), pages 1-12, October.
- Jia-Xin Li & Yun-Ze Li & Ben-Yuan Cai & En-Hui Li, 2019. "Experimental Investigation on Heat Transfer Mechanism of Air-Blast-Spray-Cooling System with a Two-Phase Ejector Loop for Aeronautical Application," Energies, MDPI, vol. 12(20), pages 1-20, October.
More about this item
Keywords
moist air; non-equilibrium condensation; relative humidity; transonic flow; Laval nozzle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4052-:d:588819. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.