IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009096.html
   My bibliography  Save this article

Performance comparison of different heat pumps in low-temperature waste heat recovery

Author

Listed:
  • Tan, Zhimin
  • Feng, Xiao
  • Wang, Yufei

Abstract

The recovery of low-temperature waste heat can greatly reduce the fossil energy consumption, among whose technologies heat pumps show excellent energy saving effect and environmental friendliness. There are four commercial types of heat pumps, the absorption heat pump (AHP), absorption heat transformer (AHT), steam jet pump (SJP) and mechanical heat pump (MHP). To compare the energy performance of the four types of heat pumps in low-temperature waste heat recovery (WHR), simulation models for these heat pumps are established by Aspen Plus. The heat demand of the user side is described by a heat ratio (the ratio of the user side heat demand to the waste heat). The energy performance of four kinds of heat pumps in low-temperature WHR is compared and analyzed by the coefficient of performance (COP), exergy efficiency and annual savings of standard coal. The results show that when the heat ratio is higher than about 0.5, the MHP has the best energy performance. When the heat ratio is lower than about 0.5, the AHT is the best, for it can not only meet the heat demand of the user side, but make full use of the waste heat source as well. The performance of SJP is always better than that of AHP. Combined with qualitative economic analysis, it is recommended that the SJP is a good choice when HR is higher than about 0.7, otherwise the AHT is a suitable choice. This study can provide references for choosing a suitable heat pump in the low-temperature WHR.

Suggested Citation

  • Tan, Zhimin & Feng, Xiao & Wang, Yufei, 2021. "Performance comparison of different heat pumps in low-temperature waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009096
    DOI: 10.1016/j.rser.2021.111634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinshi Wang & Weiqi Liu & Guangyao Liu & Weijia Sun & Gen Li & Binbin Qiu, 2020. "Theoretical Design and Analysis of the Waste Heat Recovery System of Turbine Exhaust Steam Using an Absorption Heat Pump for Heating Supply," Energies, MDPI, vol. 13(23), pages 1-19, November.
    2. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    3. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    4. Smolen, S. & Budnik-Rodz, M., 2006. "Low rate energy use for heating and in industrial energy supply systems—Some technical and economical aspects," Energy, Elsevier, vol. 31(14), pages 2588-2603.
    5. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Farshi, L. Garousi & Khalili, S., 2019. "Thermoeconomic analysis of a new ejector boosted hybrid heat pump (EBHP) and comparison with three conventional types of heat pumps," Energy, Elsevier, vol. 170(C), pages 619-635.
    7. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    8. Sara Sewastianik & Andrzej Gajewski, 2020. "Energetic and Ecologic Heat Pumps Evaluation in Poland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    2. Wang, Lili & Xia, Li & Li, Chengyun & Tian, Yuan & Teng, Junfeng & Sun, Xiaoyan & Xiang, Shuguang, 2023. "Exergy, economic, and exergoenvironmental analyses of new combined heat and power process based on mechanism analysis of working fluid screening," Energy, Elsevier, vol. 262(PA).
    3. Tan, Zhimin & Feng, Xiao & Yang, Minbo & Wang, Yufei, 2022. "Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery," Energy, Elsevier, vol. 260(C).
    4. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    6. Agata Ołtarzewska & Dorota Anna Krawczyk, 2021. "Simulation of the Use of Ground and Air Source Heat Pumps in Different Climatic Conditions on the Example of Selected Cities: Warsaw, Madrid, Riga, and Rome," Energies, MDPI, vol. 14(20), pages 1-11, October.
    7. Chen, Yusheng & Standl, Phillip & Weiker, Sebastian & Gaderer, Matthias, 2022. "A general approach to integrating compression heat pumps into biomass heating networks for heat recovery," Applied Energy, Elsevier, vol. 310(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
    2. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    3. Cao, Yue & Hu, Hui & Chen, Ranjing & He, Tianyu & Si, Fengqi, 2023. "Comparative analysis on thermodynamic performance of combined heat and power system employing steam ejector as cascaded heat sink," Energy, Elsevier, vol. 275(C).
    4. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    6. Hinkelman, Kathryn & Anbarasu, Saranya & Wetter, Michael & Gautier, Antoine & Zuo, Wangda, 2022. "A fast and accurate modeling approach for water and steam thermodynamics with practical applications in district heating system simulation," Energy, Elsevier, vol. 254(PA).
    7. Jussi Saari & Ekaterina Sermyagina & Juha Kaikko & Markus Haider & Marcelo Hamaguchi & Esa Vakkilainen, 2021. "Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler," Energies, MDPI, vol. 14(6), pages 1-21, March.
    8. Ghavami, Morteza & Gholizadeh, Mohammad & Deymi-Dashtebayaz, Mahdi, 2023. "Parametric study and optimization analysis of a multi-generation system using waste heat in natural gas refinery- an energy and exergoeconomic analysis," Energy, Elsevier, vol. 272(C).
    9. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    10. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    11. Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
    12. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    13. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    14. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    16. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    17. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
    19. Alfredo Gimelli & Massimiliano Muccillo, 2021. "Development of a 1 kW Micro-Polygeneration System Fueled by Natural Gas for Single-Family Users," Energies, MDPI, vol. 14(24), pages 1-21, December.
    20. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2023. "Difference analysis and recognition of hydraulic oscillation by two types of sudden faults on long-distance district heating pipeline," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.