IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6701-d657256.html
   My bibliography  Save this article

Simulation of the Use of Ground and Air Source Heat Pumps in Different Climatic Conditions on the Example of Selected Cities: Warsaw, Madrid, Riga, and Rome

Author

Listed:
  • Agata Ołtarzewska

    (Doctoral School of BUT, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Dorota Anna Krawczyk

    (Department of HVAC Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

Abstract

Heat pumps, an example of one of the most environmentally friendly technologies, can play a key role in the future of sustainable energy. Due to the European Union’s ambitious goals to achieve climate neutrality by 2050, research is currently focused on finding solutions to increase the energy and economic efficiency of heating and cooling with heat pumps to benefit the environment. This paper presents the results of energy simulations for a single-family building located in selected cities—Warsaw (Poland), Madrid (Spain), Riga (Latvia), and Rome (Italy)—as a case study for different climate conditions and energy policy. In each variant, ground and air source heat pumps are considered for heating, cooling, ventilation, and air conditioning (HVAC) purposes. Moreover, we conducted an economic estimation including investment and operating costs, as well as an ecological analysis of carbon dioxide (CO 2 ) emissions. Results show that heat pumps as an energy source for HVAC systems seem to be much more beneficial for Mediterranean-type subtropical climates, than for continental-type climates. The lowest value of total energy demand was obtained in Rome (60 kWh/m 2 ∙rok), while the highest values were recorded in Riga and Warsaw (more than 90 kWh/m 2 ∙rok). In terms of economic and environmental aspects, the use of heat pumps was most advantageous when considering Rome. This paper provides a starting point for further research focusing on increasing the energy and economic efficiency of heat pumps, especially in cold climates, as well as a multi-parameter analysis taking into account national prices, policies regarding development of renewable energy sources, and technical and climatic conditions. It also shows how increasing the share of renewable energy sources (RESs) in the national energy mix contributes to the reduction of CO 2 emissions.

Suggested Citation

  • Agata Ołtarzewska & Dorota Anna Krawczyk, 2021. "Simulation of the Use of Ground and Air Source Heat Pumps in Different Climatic Conditions on the Example of Selected Cities: Warsaw, Madrid, Riga, and Rome," Energies, MDPI, vol. 14(20), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6701-:d:657256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ninikas, Konstantinos & Hytiris, Nicholas & Emmanuel, Rohinton & Aaen, Bjorn & Younger, Paul L., 2016. "Heat recovery from air in underground transport tunnels," Renewable Energy, Elsevier, vol. 96(PA), pages 843-849.
    2. Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).
    3. Yong-Dae Jeong & Min Gyung Yu & Yujin Nam, 2017. "Feasibility Study of a Heating, Cooling and Domestic Hot Water System Combining a Photovoltaic-Thermal System and a Ground Source Heat Pump," Energies, MDPI, vol. 10(8), pages 1-29, August.
    4. Sim, Jaehoon & Lee, Hyoin & Jeong, Ji Hwan, 2021. "Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system," Applied Energy, Elsevier, vol. 290(C).
    5. Rokas Valancius & Rao Martand Singh & Andrius Jurelionis & Juozas Vaiciunas, 2019. "A Review of Heat Pump Systems and Applications in Cold Climates: Evidence from Lithuania," Energies, MDPI, vol. 12(22), pages 1-18, November.
    6. Tan, Zhimin & Feng, Xiao & Wang, Yufei, 2021. "Performance comparison of different heat pumps in low-temperature waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    8. Roy, Debasree & Chakraborty, Tanusree & Basu, Dipanjan & Bhattacharjee, Bishwajit, 2020. "Feasibility and performance of ground source heat pump systems for commercial applications in tropical and subtropical climates," Renewable Energy, Elsevier, vol. 152(C), pages 467-483.
    9. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Matteo Rivoire & Alessandro Casasso & Bruno Piga & Rajandrea Sethi, 2018. "Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps," Energies, MDPI, vol. 11(8), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Sáez Blázquez & Ignacio Martín Nieto & Javier Carrasco García & Pedro Carrasco García & Arturo Farfán Martín & Diego González-Aguilera, 2023. "Comparative Analysis of Ground Source and Air Source Heat Pump Systems under Different Conditions and Scenarios," Energies, MDPI, vol. 16(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Kropas & Giedrė Streckienė & Juozas Bielskus, 2021. "Experimental Investigation of Frost Formation Influence on an Air Source Heat Pump Evaporator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    2. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    3. Piotr Ciuman & Jan Kaczmarczyk & Małgorzata Jastrzębska, 2022. "Simulation Analysis of Heat Pumps Application for the Purposes of the Silesian Botanical Garden Facilities in Poland," Energies, MDPI, vol. 16(1), pages 1-19, December.
    4. Chinnasamy, Subramaniyan & Arunachalam, Amarkarthik, 2023. "Experimental investigation on direct expansion solar-air source heat pump for water heating application," Renewable Energy, Elsevier, vol. 202(C), pages 222-233.
    5. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    7. O'Hegarty, R. & Kinnane, O. & Lennon, D. & Colclough, S., 2022. "Air-to-water heat pumps: Review and analysis of the performance gap between in-use and product rated performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    9. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    10. Wang, Wenyi & Zhao, Zhongfan & Zhou, Qun & Qiao, Yiyuan & Cao, Feng, 2021. "Model predictive control for the operation of a transcritical CO2 air source heat pump water heater," Applied Energy, Elsevier, vol. 300(C).
    11. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    12. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Sabina Kordana & Kamil Pochwat & Daniel Słyś & Mariusz Starzec, 2019. "Opportunities and Threats of Implementing Drain Water Heat Recovery Units in Poland," Resources, MDPI, vol. 8(2), pages 1-17, May.
    14. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    15. Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
    16. Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2022. "Impact of thermosiphoning on long-term behavior of closed-loop deep geothermal systems for sustainable energy exploitation," Renewable Energy, Elsevier, vol. 194(C), pages 1247-1260.
    17. Sommerfeldt, Nelson & Pearce, Joshua M., 2023. "Can grid-tied solar photovoltaics lead to residential heating electrification? A techno-economic case study in the midwestern U.S," Applied Energy, Elsevier, vol. 336(C).
    18. Candas, Soner & Reveron Baecker, Beneharo & Mohapatra, Anurag & Hamacher, Thomas, 2023. "Optimization-based framework for low-voltage grid reinforcement assessment under various levels of flexibility and coordination," Applied Energy, Elsevier, vol. 343(C).
    19. Claudia Naldi & Enzo Zanchini, 2019. "Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature," Energies, MDPI, vol. 12(19), pages 1-18, September.
    20. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6701-:d:657256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.