IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i14p2588-2603.html
   My bibliography  Save this article

Low rate energy use for heating and in industrial energy supply systems—Some technical and economical aspects

Author

Listed:
  • Smolen, S.
  • Budnik-Rodz, M.

Abstract

The subject hereof are two typical examples of waste heat and low-temperature heat use and the objective is to evaluate economic effectiveness taking into account various boundary conditions. The first facility considered is an “earth-coupled” heat pump with direct evaporation used as a component of a heating system. The second is an industrial installation, based on a specific project to use waste heat from the cooling process. Alternatively, four different technical options have been considered, including the use of the compression heat pump, absorption heat pump, heat transformer (absorption) and combined system with a gas motor for driving the heat pump compressor. An original simple methodology for economic analysis evaluating uses of low-temperature heat sources as elements of energy supply systems has been developed using input data taken from actual research or industrial projects. The paper also offers a comparison between such energy supply systems operating under different economic conditions of Germany and Poland.

Suggested Citation

  • Smolen, S. & Budnik-Rodz, M., 2006. "Low rate energy use for heating and in industrial energy supply systems—Some technical and economical aspects," Energy, Elsevier, vol. 31(14), pages 2588-2603.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:14:p:2588-2603
    DOI: 10.1016/j.energy.2005.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    2. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    3. Tan, Zhimin & Feng, Xiao & Wang, Yufei, 2021. "Performance comparison of different heat pumps in low-temperature waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Horuz, Ilhami & Kurt, Bener, 2010. "Absorption heat transformers and an industrial application," Renewable Energy, Elsevier, vol. 35(10), pages 2175-2181.
    5. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    6. Runchen Wang & Xiaonan Du & Yuetao Shi & Yuhao Wang & Fengzhong Sun, 2023. "An Ejector and Flashbox-Integrated Approach to Flue Gas Waste Heat Recovery: A Novel Systematic Study," Energies, MDPI, vol. 16(22), pages 1-21, November.
    7. van de Bor, D.M. & Infante Ferreira, C.A., 2013. "Quick selection of industrial heat pump types including the impact of thermodynamic losses," Energy, Elsevier, vol. 53(C), pages 312-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:14:p:2588-2603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.