IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp1140-1156.html
   My bibliography  Save this article

Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications

Author

Listed:
  • Ziviani, Davide
  • James, Nelson A.
  • Accorsi, Felipe A.
  • Braun, James E.
  • Groll, Eckhard A.

Abstract

Organic Rankine cycles (ORCs) are thermodynamic power cycles designed to generate work from a wide range of heat source conditions. In particular, low-grade waste heat recovery (WHR) (<150 °C) can be effectively exploited with such systems. The efficiency of an ORC is highly dependent on its expander performance. In the low power output range (<10 kW), scroll expanders are cost-effective. Although a number of researchers have investigated the use of scroll compressors as expanders, very little work has been carried out in modeling and investigating the performance of oil-free expanders. In this work, an experimental evaluation of a newly designed open-drive oil-free scroll expander was performed. The expander had a nominal capacity of 5 kW, built-in volume ratio of 3.5, and was integrated into an ORC test-rig with R245fa as working fluid. The experimental data consisted of 75 data points that were used to map the oil-free operation of the scroll expander over five expander rotational speeds (from 800 rpm to 3000 rpm). Two heat sources inlet temperature, i.e. 85 °C and 110 °C, were investigated. The scroll expander achieved a maximum overall isentropic efficiency of 0.58 for the temperature source of 110 °C, for the imposed specific volume ratio of 6.12 at rotational speed of 1600 rpm. For the same heat source, the maximum expander power output was 3.75 kW for an imposed specific volume ratio of 6.55 and rotational speed of 2500 rpm. Besides the experimental work, the performance of the expander was characterized by means of a semi-empirical model to break-down the different loss terms. A well known model available in the literature was extended to account for the major frictional losses in a scroll machine, i.e. bearings, tip-seals and other sources of friction. Additionally, an Artificial Neural Network (ANN) modeling approach was also proposed to achieve higher accuracy in mapping expander performance for use in system simulation. The experimental data and model source codes are provided as supplementary materials.

Suggested Citation

  • Ziviani, Davide & James, Nelson A. & Accorsi, Felipe A. & Braun, James E. & Groll, Eckhard A., 2018. "Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications," Applied Energy, Elsevier, vol. 230(C), pages 1140-1156.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1140-1156
    DOI: 10.1016/j.apenergy.2018.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2016. "Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery," Applied Energy, Elsevier, vol. 181(C), pages 155-170.
    2. Song, Panpan & Wei, Mingshan & Liu, Zhen & Zhao, Ben, 2015. "Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach," Applied Energy, Elsevier, vol. 150(C), pages 274-285.
    3. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    4. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    5. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2017. "Dynamic modelling and experimental validation of scroll expander for small scale power generation system," Applied Energy, Elsevier, vol. 186(P3), pages 262-281.
    6. Davide Ziviani & Brandon J. Woodland & Emeline Georges & Eckhard A. Groll & James E. Braun & W. Travis Horton & Martijn Van den Broek & Michel De Paepe, 2016. "Development and a Validation of a Charge Sensitive Organic Rankine Cycle (ORC) Simulation Tool," Energies, MDPI, vol. 9(6), pages 1-36, May.
    7. Al Jubori, Ayad M. & Al-Dadah, Raya K. & Mahmoud, Saad & Daabo, Ahmed, 2017. "Modelling and parametric analysis of small-scale axial and radial-outflow turbines for Organic Rankine Cycle applications," Applied Energy, Elsevier, vol. 190(C), pages 981-996.
    8. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    9. Rattner, Alexander S. & Garimella, Srinivas, 2011. "Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA," Energy, Elsevier, vol. 36(10), pages 6172-6183.
    10. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    11. Varga, Zoltán & Palotai, Balázs, 2017. "Comparison of low temperature waste heat recovery methods," Energy, Elsevier, vol. 137(C), pages 1286-1292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Dongyu & Liu, Qiang & Ji, Zhongli, 2022. "Effects of two-phase expander on the thermoeconomics of organic double-flash cycles for geothermal power generation," Energy, Elsevier, vol. 239(PD).
    2. Jin, Yunli & Gao, Naiping & Zhu, Tong, 2022. "Effect of resistive load characteristics on the performance of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 246(C).
    3. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    4. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    5. Oh, Jinwoo & Jeong, Hoyoung & Kim, Joonbyum & Lee, Hoseong, 2020. "Numerical and experimental investigation on thermal-hydraulic characteristics of a scroll expander for organic Rankine cycle," Applied Energy, Elsevier, vol. 278(C).
    6. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    7. Chen, Heng & Alzahrani, Huda A. & Amin, Mohammed A. & Sun, Minghui, 2023. "Towards sustainable development through the design, multi-aspect analyses, and multi-objective optimization of a novel solar-based multi-generation system," Energy, Elsevier, vol. 267(C).
    8. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    9. Naseri, Ali & Moradi, Ramin & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of a revolving vane expander in a micro-scale organic Rankine cycle system for low-grade waste heat recovery," Energy, Elsevier, vol. 253(C).
    10. Eppinger, Bernd & Zigan, Lars & Karl, Jürgen & Will, Stefan, 2020. "Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids," Applied Energy, Elsevier, vol. 280(C).
    11. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    12. Zhuxian Liu & Zhong Wu & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang, 2022. "Performance Investigation of Single–Piston Free Piston Expander–Linear Generator with Multi–Parameter Based on Simulation Model," Energies, MDPI, vol. 15(23), pages 1-28, November.
    13. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan, 2022. "Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection," Applied Energy, Elsevier, vol. 311(C).
    14. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    15. Tian, Zhen & Gan, Wanlong & Zou, Xianzhi & Zhang, Yuan & Gao, Wenzhong, 2022. "Performance prediction of a cryogenic organic Rankine cycle based on back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 254(PB).
    16. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2022. "CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders," Energy, Elsevier, vol. 244(PA).
    17. Feng, Yong-qiang & Xu, Jing-wei & He, Zhi-xia & Hung, Tzu-Chen & Shao, Meng & Zhang, Fei-yang, 2022. "Numerical simulation and optimal design of scroll expander applied in a small-scale organic rankine cycle," Energy, Elsevier, vol. 260(C).
    18. Lei, Biao & Yu, Hai-bin & Li, Guo-qiang & Wu, Yu-Ting & Wang, Wei, 2022. "Thermodynamic investigations on internal generator cooling for hermetic expanders in Organic Rankine Cycles," Energy, Elsevier, vol. 251(C).
    19. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    20. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Ottaviano, S. & Peretto, A. & Torricelli, N., 2019. "Application and comparison of semi-empirical models for performance prediction of a kW-size reciprocating piston expander," Applied Energy, Elsevier, vol. 249(C), pages 143-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    2. Ziviani, Davide & Groll, Eckhard A. & Braun, James E. & De Paepe, Michel & van den Broek, Martijn, 2018. "Analysis of an organic Rankine cycle with liquid-flooded expansion and internal regeneration (ORCLFE)," Energy, Elsevier, vol. 144(C), pages 1092-1106.
    3. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2017. "Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander," Applied Energy, Elsevier, vol. 189(C), pages 416-432.
    4. Song, Panpan & Wei, Mingshan & Zhang, Yangjun & Sun, Liwei & Emhardt, Simon & Zhuge, Weilin, 2018. "The impact of a bilateral symmetric discharge structure on the performance of a scroll expander for ORC power generation system," Energy, Elsevier, vol. 158(C), pages 458-470.
    5. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    6. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    7. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    8. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    9. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    10. Mendoza, Luis Carlos & Lemofouet, Sylvain & Schiffmann, Jürg, 2017. "Testing and modelling of a novel oil-free co-rotating scroll machine with water injection," Applied Energy, Elsevier, vol. 185(P1), pages 201-213.
    11. Liu, Liuchen & Zhu, Tong & Wang, Tiantian & Gao, Naiping, 2019. "Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions," Energy, Elsevier, vol. 174(C), pages 664-677.
    12. Oh, Jinwoo & Jeong, Hoyoung & Kim, Joonbyum & Lee, Hoseong, 2020. "Numerical and experimental investigation on thermal-hydraulic characteristics of a scroll expander for organic Rankine cycle," Applied Energy, Elsevier, vol. 278(C).
    13. Zhang, Hong-Hu & Zhang, Yi-Fan & Feng, Yong-Qiang & Chang, Jen-Chieh & Chang, Chao-Wei & Xi, Huan & Gong, Liang & Hung, Tzu-Chen & Li, Ming-Jia, 2023. "The parametric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison," Energy, Elsevier, vol. 268(C).
    14. Casari, Nicola & Fadiga, Ettore & Pinelli, Michele & Randi, Saverio & Suman, Alessio & Ziviani, Davide, 2020. "Investigation of flow characteristics in a single screw expander: A numerical approach," Energy, Elsevier, vol. 213(C).
    15. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    16. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    17. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    18. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    19. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    20. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.

    More about this item

    Keywords

    Scroll expander; Oil-free; Organic Rankine cycle; R245fa; ANN;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1140-1156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.