IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v150y2015icp274-285.html
   My bibliography  Save this article

Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach

Author

Listed:
  • Song, Panpan
  • Wei, Mingshan
  • Liu, Zhen
  • Zhao, Ben

Abstract

Blocking effect of the orbiting scroll tip on the suction flow of a scroll expander, closely associated with the location of the suction port, has a vital role on the transient performances of the expander. In this study, CFD based 3D numerical simulations were performed on scroll expanders with different suction port locations to estimate transient features of the aerodynamic parameters including pulsating mass flow rate through the suction port, asymmetric distributions of the internal flow, gas forces and moments exerted on the orbiting scroll. The results illustrate the pulsating features of the suction mass flow rate, in response to both variations of the suction flow area and the suction chamber volume, change obviously for expanders with different suction port locations. A special aerodynamic separation of the suction chamber induces a sudden drop of the suction mass flow rate before the top profile meshing. Apart from the mass flow rate, both the fluctuating intensities and the magnitudes of the gas forces and moments change with different suction port locations as well. A proposed local analysis approach on the driving moment indicates the fluctuations of the driving moment in different time periods are induced by different factors, and transient moment features of all scroll segments are closely associated with the asymmetric pressure distribution which is an integrated result of the suction/discharging flows and the eccentric rotation of the orbiting scroll.

Suggested Citation

  • Song, Panpan & Wei, Mingshan & Liu, Zhen & Zhao, Ben, 2015. "Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach," Applied Energy, Elsevier, vol. 150(C), pages 274-285.
  • Handle: RePEc:eee:appene:v:150:y:2015:i:c:p:274-285
    DOI: 10.1016/j.apenergy.2015.04.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    2. Bracco, Roberto & Clemente, Stefano & Micheli, Diego & Reini, Mauro, 2013. "Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle)," Energy, Elsevier, vol. 58(C), pages 107-116.
    3. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    4. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2012. "Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications," Applied Energy, Elsevier, vol. 97(C), pages 792-801.
    5. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    6. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    7. Zhou, Naijun & Wang, Xiaoyuan & Chen, Zhuo & Wang, Zhiqi, 2013. "Experimental study on Organic Rankine Cycle for waste heat recovery from low-temperature flue gas," Energy, Elsevier, vol. 55(C), pages 216-225.
    8. Muhyiddine Jradi & Jinxing Li & Hao Liu & Saffa Riffat, 2014. "Micro-scale ORC-based combined heat and power system using a novel scroll expander," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(2), pages 91-99.
    9. Hogerwaard, Janette & Dincer, Ibrahim & Zamfirescu, Calin, 2013. "Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration," Energy, Elsevier, vol. 62(C), pages 300-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiqi Wang & Long Jiang & Zhiwei Ma & Abigail Gonzalez-Diaz & Yaodong Wang & Anthony Paul Roskilly, 2019. "Comparative Analysis of Small-Scale Organic Rankine Cycle Systems for Solar Energy Utilisation," Energies, MDPI, vol. 12(5), pages 1-22, March.
    2. Piotr Kolasiński, 2020. "Domestic Organic Rankine Cycle-Based Cogeneration Systems as a Way to Reduce Dust Emissions in Municipal Heating," Energies, MDPI, vol. 13(15), pages 1-22, August.
    3. Zhang, Yi-Fan & Li, Ming-Jia & Ren, Xiao & Duan, Xin-Yue & Wu, Chia-Jung & Xi, Huan & Feng, Yong-Qiang & Gong, Liang & Hung, Tzu-Chen, 2022. "Effect of heat source supplies on system behaviors of ORCs with different capacities: An experimental comparison between the 3 kW and 10 kW unit," Energy, Elsevier, vol. 254(PB).
    4. Zhang, Hong-Hu & Zhang, Yi-Fan & Feng, Yong-Qiang & Chang, Jen-Chieh & Chang, Chao-Wei & Xi, Huan & Gong, Liang & Hung, Tzu-Chen & Li, Ming-Jia, 2023. "The parametric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison," Energy, Elsevier, vol. 268(C).
    5. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    6. Mendoza, Luis Carlos & Lemofouet, Sylvain & Schiffmann, Jürg, 2017. "Testing and modelling of a novel oil-free co-rotating scroll machine with water injection," Applied Energy, Elsevier, vol. 185(P1), pages 201-213.
    7. Zhang, Xinjing & Xu, Yujie & Xu, Jian & Sheng, Yong & Zuo, Zhitao & Liu, Jimin & Chen, Haisheng & Wang, Yaodong & Huang, Ye, 2017. "Study on the performance and optimization of a scroll expander driven by compressed air," Applied Energy, Elsevier, vol. 186(P3), pages 347-358.
    8. Hailong Yang & Yonghong Xu & Xiaohui Zhong & Jiajun Zeng & Fubin Yang, 2024. "Experimental Investigation on the Performance of the Scroll Expander under Various Driving Cycles," Energies, MDPI, vol. 17(2), pages 1-24, January.
    9. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    10. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    11. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    12. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2020. "CFD modelling of small scale ORC scroll expanders using variable wall thicknesses," Energy, Elsevier, vol. 199(C).
    13. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2022. "CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders," Energy, Elsevier, vol. 244(PA).
    14. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.
    15. Oh, Jinwoo & Jeong, Hoyoung & Kim, Joonbyum & Lee, Hoseong, 2020. "Numerical and experimental investigation on thermal-hydraulic characteristics of a scroll expander for organic Rankine cycle," Applied Energy, Elsevier, vol. 278(C).
    16. Ziviani, Davide & James, Nelson A. & Accorsi, Felipe A. & Braun, James E. & Groll, Eckhard A., 2018. "Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications," Applied Energy, Elsevier, vol. 230(C), pages 1140-1156.
    17. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    18. Song, Panpan & Wei, Mingshan & Zhang, Yangjun & Sun, Liwei & Emhardt, Simon & Zhuge, Weilin, 2018. "The impact of a bilateral symmetric discharge structure on the performance of a scroll expander for ORC power generation system," Energy, Elsevier, vol. 158(C), pages 458-470.
    19. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2017. "Dynamic modelling and experimental validation of scroll expander for small scale power generation system," Applied Energy, Elsevier, vol. 186(P3), pages 262-281.
    20. Casari, Nicola & Fadiga, Ettore & Pinelli, Michele & Randi, Saverio & Suman, Alessio & Ziviani, Davide, 2020. "Investigation of flow characteristics in a single screw expander: A numerical approach," Energy, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    2. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    3. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    4. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    5. Qiu, K. & Entchev, E., 2020. "Development of an organic Rankine cycle-based micro combined heat and power system for residential applications," Applied Energy, Elsevier, vol. 275(C).
    6. Miao, Zheng & Xu, Jinliang & Zhang, Kai, 2017. "Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander," Energy, Elsevier, vol. 134(C), pages 35-49.
    7. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    8. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2017. "Dynamic modelling and experimental validation of scroll expander for small scale power generation system," Applied Energy, Elsevier, vol. 186(P3), pages 262-281.
    9. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    10. Feng, Yong-qiang & Hung, Tzu-Chen & Su, Ting-Ying & Wang, Shuang & Wang, Qian & Yang, Shih-Cheng & Lin, Jaw-Ren & Lin, Chih-Hung, 2017. "Experimental investigation of a R245fa-based organic Rankine cycle adapting two operation strategies: Stand alone and grid connect," Energy, Elsevier, vol. 141(C), pages 1239-1253.
    11. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & González, Manuel & Mota-Babiloni, Adrián, 2015. "Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources," Energy, Elsevier, vol. 82(C), pages 269-276.
    12. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    13. Qiu, K. & Entchev, E., 2022. "A micro-CHP system with organic Rankine cycle using R1223zd(E) and n-Pentane as working fluids," Energy, Elsevier, vol. 239(PA).
    14. Liu, Chao & Wang, Shukun & Zhang, Cheng & Li, Qibin & Xu, Xiaoxiao & Huo, Erguang, 2019. "Experimental study of micro-scale organic Rankine cycle system based on scroll expander," Energy, Elsevier, vol. 188(C).
    15. Lei, Biao & Wu, Yu-Ting & Wang, Wei & Wang, Jing-Fu & Ma, Chong-Fang, 2014. "A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 78(C), pages 846-853.
    16. Yu-Ting Wu & Biao Lei & Chong-Fang Ma & Lei Zhao & Jing-Fu Wang & Hang Guo & Yuan-Wei Lu, 2014. "Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles," Energies, MDPI, vol. 7(8), pages 1-15, July.
    17. Li, Yung-Ming & Hung, Tzu-Chen & Wu, Chia-Jung & Su, Ting-Ying & Xi, Huan & Wang, Chi-Chuan, 2021. "Experimental investigation of 3-kW organic Rankine cycle (ORC) system subject to heat source conditions: A new appraisal for assessment," Energy, Elsevier, vol. 217(C).
    18. Shu, Gequn & Zhao, Mingru & Tian, Hua & Huo, Yongzhan & Zhu, Weijie, 2016. "Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine," Energy, Elsevier, vol. 115(P1), pages 756-769.
    19. Zhang, Hong-Hu & Xi, Huan & He, Ya-Ling & Zhang, Yu-Wen & Ning, Bo, 2019. "Experimental study of the organic rankine cycle under different heat and cooling conditions," Energy, Elsevier, vol. 180(C), pages 678-688.
    20. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:150:y:2015:i:c:p:274-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.