IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp1481-1492.html
   My bibliography  Save this article

Application of the counterfactual method to assess of the local economic impact of a nuclear power station

Author

Listed:
  • Gallo-Rivera, María Teresa
  • Mancha-Navarro, Tomás
  • Garrido-Yserte, Rubén

Abstract

Several studies have examined the local economic effects of nuclear power stations. However, their heterogeneity within countries and between countries indicate that one must be very cautious in drawing general conclusions about the positive and negative local economic effects of nuclear power stations over time. Using information about a specific nuclear facility in Spain and its zone of influence, we investigate the local economic impact of a nuclear facility by applying an infrequently used methodology called the “counterfactual” method. The purpose of this application of the counterfactual method is to establish what would have happened if the nuclear power plant had not been built where it was. This method permits observation of the impact of the nuclear power plant on the evolution of a set of variables whose influence is extremely important for the local area, such as the population, unemployment level, per capita income, and municipal governments’ revenues. Generalization of this method could offer the possibility of providing comparative results. However, the method must be complemented with other short-term approaches to provide a more specific analysis of the economic effects on the local actors involved and to offer incentives to policymakers to design and develop policies aimed at boosting economic activity in the area.

Suggested Citation

  • Gallo-Rivera, María Teresa & Mancha-Navarro, Tomás & Garrido-Yserte, Rubén, 2013. "Application of the counterfactual method to assess of the local economic impact of a nuclear power station," Energy Policy, Elsevier, vol. 62(C), pages 1481-1492.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1481-1492
    DOI: 10.1016/j.enpol.2013.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513006770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teräväinen, Tuula & Lehtonen, Markku & Martiskainen, Mari, 2011. "Climate change, energy security, and risk--debating nuclear new build in Finland, France and the UK," Energy Policy, Elsevier, vol. 39(6), pages 3434-3442, June.
    2. Greenberg, Michael & Isserman, Andrew & Frisch, Michael & Krueckeberg, Donald & Lowrie, Karen & Mayer, Henry & Simon, Darien & Sorenson, David, 1999. "Questioning conventional wisdom: the regional economic impacts of Major US nuclear weapons sites, 1970-1994," Socio-Economic Planning Sciences, Elsevier, vol. 33(3), pages 183-204, September.
    3. Kenley, C.R. & Klingler, R.D. & Plowman, C.M. & Soto, R. & Turk, R.J. & Baker, R.L. & Close, S.A. & McDonnell, V.L. & Paul, S.W. & Rabideau, L.R. & Rao, S.S. & Reilly, B.P., 2009. "Job creation due to nuclear power resurgence in the United States," Energy Policy, Elsevier, vol. 37(11), pages 4894-4900, November.
    4. Goodfellow, Martin J. & Williams, Hugo R. & Azapagic, Adisa, 2011. "Nuclear renaissance, public perception and design criteria: An exploratory review," Energy Policy, Elsevier, vol. 39(10), pages 6199-6210, October.
    5. Adamantiades, A. & Kessides, I., 2009. "Nuclear power for sustainable development: Current status and future prospects," Energy Policy, Elsevier, vol. 37(12), pages 5149-5166, December.
    6. Kessides, Ioannis N., 2012. "The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise," Energy Policy, Elsevier, vol. 48(C), pages 185-208.
    7. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    8. Bob Van der Zwaan, 2008. "Prospects for nuclear energy in Europe," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 30(1/2/3/4), pages 102-121.
    9. Lofstedt, Ragnar, 2008. "Are renewables an alternative to nuclear power? An analysis of the Austria/Slovakia discussions," Energy Policy, Elsevier, vol. 36(6), pages 2226-2233, June.
    10. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2008. "Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process," Energy Policy, Elsevier, vol. 36(3), pages 1074-1089, March.
    11. Kessides, Ioannis N., 2012. "The future of the Nuclear industry reconsidered : risks, uncertainties, and continued potential," Policy Research Working Paper Series 6112, The World Bank.
    12. Srinivasan, T.N. & Gopi Rethinaraj, T.S., 2013. "Fukushima and thereafter: Reassessment of risks of nuclear power," Energy Policy, Elsevier, vol. 52(C), pages 726-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanek, Wojciech & Szargut, Jan & Kolenda, Zygmunt & Czarnowska, Lucyna, 2016. "Exergo-ecological and economic evaluation of a nuclear power plant within the whole life cycle," Energy, Elsevier, vol. 117(P2), pages 369-377.
    2. Gralla, Fabienne & Abson, David J. & Møller, Anders P. & Lang, Daniel J. & von Wehrden, Henrik, 2017. "Energy transitions and national development indicators: A global review of nuclear energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1251-1265.
    3. Paolo Esposito & Valerio Brescia & Chiara Fantauzzi & Rocco Frondizi, 2021. "Understanding Social Impact and Value Creation in Hybrid Organizations: The Case of Italian Civil Service," Sustainability, MDPI, vol. 13(7), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartmann, Patrick & Apaolaza, Vanessa & D'Souza, Clare & Echebarria, Carmen & Barrutia, Jose M., 2013. "Nuclear power threats, public opposition and green electricity adoption: Effects of threat belief appraisal and fear arousal," Energy Policy, Elsevier, vol. 62(C), pages 1366-1376.
    2. Vladimir M. Cvetković & Adem Öcal & Yuliya Lyamzina & Eric K. Noji & Neda Nikolić & Goran Milošević, 2021. "Nuclear Power Risk Perception in Serbia: Fear of Exposure to Radiation vs. Social Benefits," Energies, MDPI, vol. 14(9), pages 1-19, April.
    3. Verbruggen, Aviel & Laes, Erik & Lemmens, Sanne, 2014. "Assessment of the actual sustainability of nuclear fission power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 16-28.
    4. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    5. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    6. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    7. Han, Charles C., 2014. "Demarketing fear: Bring the nuclear issue back to rational discourse," Energy Policy, Elsevier, vol. 64(C), pages 183-192.
    8. Bjoern Hagen & Adenike Opejin & K. David Pijawka, 2022. "Risk Perceptions and Amplification Effects over Time: Evaluating Fukushima Longitudinal Surveys," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    9. Seoyong Kim & Jae Eun Lee & Donggeun Kim, 2019. "Searching for the Next New Energy in Energy Transition: Comparing the Impacts of Economic Incentives on Local Acceptance of Fossil Fuels, Renewable, and Nuclear Energies," Sustainability, MDPI, vol. 11(7), pages 1-32, April.
    10. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    11. Jaeyoung Lim & Kuk-Kyoung Moon, 2021. "Can Political Trust Weaken the Relationship between Perceived Environmental Threats and Perceived Nuclear Threats? Evidence from South Korea," IJERPH, MDPI, vol. 18(18), pages 1-13, September.
    12. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    13. Youngho CHANG & Yanfei LI, 2014. "Non-renewable Resources in Asian Economies: Perspective of Availability, Applicability Acceptability, and Affordability," Working Papers DP-2014-04, Economic Research Institute for ASEAN and East Asia (ERIA).
    14. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    15. Brookes, Naomi J. & Locatelli, Giorgio, 2015. "Power plants as megaprojects: Using empirics to shape policy, planning, and construction management," Utilities Policy, Elsevier, vol. 36(C), pages 57-66.
    16. Gupta, Kuhika & Ripberger, Joseph T. & Fox, Andrew S. & Jenkins-Smith, Hank C. & Silva, Carol L., 2021. "The future of nuclear energy in India: Evidence from a nationwide survey," Energy Policy, Elsevier, vol. 156(C).
    17. Dainius Genys & Ričardas Krikštolaitis, 2020. "Clusterization of public perception of nuclear energy in relation to changing political priorities," Post-Print hal-03271859, HAL.
    18. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    19. Froese, Sarah & Kunz, Nadja C. & Ramana, M.V., 2020. "Too small to be viable? The potential market for small modular reactors in mining and remote communities in Canada," Energy Policy, Elsevier, vol. 144(C).
    20. Gangyang, Zheng & Xianke, Peng & Xiaozhen, Li & Yexi, Kang & Xiangeng, Zhao, 2021. "Research on the standardization strategy of China's nuclear industry," Energy Policy, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1481-1492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.