IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v49y2012icp541-551.html
   My bibliography  Save this article

A decision support system for assessing offshore wind energy potential in the North Sea

Author

Listed:
  • Schillings, Christoph
  • Wanderer, Thomas
  • Cameron, Lachlan
  • van der Wal, Jan Tjalling
  • Jacquemin, Jerome
  • Veum, Karina

Abstract

Offshore wind energy (OWE) in the North Sea has the potential to meet large share of Europe’s future electricity demand. To deploy offshore wind parks in a rational way, the overall OWE potential has to be realistically determined. This has to be done on an international, cross-border level and by taking into account the existing man-made and nature-related uses of the North Sea. As spatial conflicts will arise between existing uses and the new OWE uses, a Decision Support System (DSS) based on a Geographic Information System (GIS) was developed. Based on data of existing sea uses and calculation rules for spatial prioritisation analysis, the DSS helps in identifying areas that are (1) generally suitable for offshore wind power, (2) strictly excluded or (3) negotiable with respect to other existing sea uses. The combination of this conflict analysis together with cost assumptions for offshore wind farms and their expected electricity yield leads to identification of favourable areas for OWE deployment in the North Sea. This approach helps to reduce the conflict between offshore wind deployment and existing sea uses in the North Sea for future planning. The results can assist decision makers in developing transnational roadmaps for OWE.

Suggested Citation

  • Schillings, Christoph & Wanderer, Thomas & Cameron, Lachlan & van der Wal, Jan Tjalling & Jacquemin, Jerome & Veum, Karina, 2012. "A decision support system for assessing offshore wind energy potential in the North Sea," Energy Policy, Elsevier, vol. 49(C), pages 541-551.
  • Handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:541-551
    DOI: 10.1016/j.enpol.2012.06.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512005666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.06.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lejeune, P. & Feltz, C., 2008. "Development of a decision support system for setting up a wind energy policy across the Walloon Region (southern Belgium)," Renewable Energy, Elsevier, vol. 33(11), pages 2416-2422.
    2. Punt, Maarten J. & Groeneveld, Rolf A. & van Ierland, Ekko C. & Stel, Jan H., 2009. "Spatial planning of offshore wind farms: A windfall to marine environmental protection?," Ecological Economics, Elsevier, vol. 69(1), pages 93-103, November.
    3. Frada Burstein & Clyde Holsapple, 2008. "Handbook on Decision Support Systems 1," International Handbooks on Information Systems, Springer, number 978-3-540-48713-5, November.
    4. Clyde Holsapple, 2008. "DSS Architecture and Types," International Handbooks on Information Systems, in: Handbook on Decision Support Systems 1, chapter 9, pages 163-189, Springer.
    5. Ramírez-Rosado, Ignacio J. & García-Garrido, Eduardo & Fernández-Jiménez, L. Alfredo & Zorzano-Santamaría, Pedro J. & Monteiro, Cláudio & Miranda, Vladimiro, 2008. "Promotion of new wind farms based on a decision support system," Renewable Energy, Elsevier, vol. 33(4), pages 558-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    2. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    3. Al-Alawi, Baha M. & Coker, Alexander D., 2018. "Multi-criteria decision support system with negotiation process for vehicle technology selection," Energy, Elsevier, vol. 157(C), pages 278-296.
    4. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    5. Astariz, S. & Iglesias, G., 2017. "The collocation feasibility index – A method for selecting sites for co-located wave and wind farms," Renewable Energy, Elsevier, vol. 103(C), pages 811-824.
    6. Kim, Taeyun & Park, Jeong-Il & Maeng, Junho, 2016. "Offshore wind farm site selection study around Jeju Island, South Korea," Renewable Energy, Elsevier, vol. 94(C), pages 619-628.
    7. Marina Polykarpou & Flora Karathanasi & Takvor Soukissian & Vasiliki Loukaidi & Ioannis Kyriakides, 2023. "A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting," Energies, MDPI, vol. 16(5), pages 1-17, February.
    8. Cavazzi, S. & Dutton, A.G., 2016. "An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK's offshore wind energy potential," Renewable Energy, Elsevier, vol. 87(P1), pages 212-228.
    9. Tosatto, Andrea & Beseler, Xavier Martínez & Østergaard, Jacob & Pinson, Pierre & Chatzivasileiadis, Spyros, 2022. "North Sea Energy Islands: Impact on national markets and grids," Energy Policy, Elsevier, vol. 167(C).
    10. Jongbloed, R.H. & van der Wal, J.T. & Lindeboom, H.J., 2014. "Identifying space for offshore wind energy in the North Sea. Consequences of scenario calculations for interactions with other marine uses," Energy Policy, Elsevier, vol. 68(C), pages 320-333.
    11. Eva Loukogeorgaki & Dimitra G. Vagiona & Margarita Vasileiou, 2018. "Site Selection of Hybrid Offshore Wind and Wave Energy Systems in Greece Incorporating Environmental Impact Assessment," Energies, MDPI, vol. 11(8), pages 1-16, August.
    12. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    14. Maddi Aizpurua-Etxezarreta & Sheila Carreno-Madinabeitia & Alain Ulazia & Jon Sáenz & Aitor Saenz-Aguirre, 2022. "Long-Term Freezing Temperatures Frequency Change Effect on Wind Energy Gain (Eurasia and North America, 1950–2019)," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    15. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    16. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    17. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    18. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed M. Zolbanin & Dursun Delen & Durand Crosby & David Wright, 2020. "A Predictive Analytics-Based Decision Support System for Drug Courts," Information Systems Frontiers, Springer, vol. 22(6), pages 1323-1342, December.
    2. Smedberg, Henrik & Bandaru, Sunith, 2023. "Interactive knowledge discovery and knowledge visualization for decision support in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1311-1329.
    3. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    4. Hamed M. Zolbanin & Dursun Delen & Durand Crosby & David Wright, 0. "A Predictive Analytics-Based Decision Support System for Drug Courts," Information Systems Frontiers, Springer, vol. 0, pages 1-20.
    5. Pavel Turčínek & Arnošt Motyčka, 2012. "Decision support system for promotion of Faculty of Business and Economics Mendel University," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 60(2), pages 443-448.
    6. Mourmouris, J.C. & Potolias, C., 2013. "A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece," Energy Policy, Elsevier, vol. 52(C), pages 522-530.
    7. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    8. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    9. McWilliam, M.K. & van Kooten, G.C. & Crawford, C., 2012. "A method for optimizing the location of wind farms," Renewable Energy, Elsevier, vol. 48(C), pages 287-299.
    10. Mari, Riccardo & Bottai, Lorenzo & Busillo, Caterina & Calastrini, Francesca & Gozzini, Bernardo & Gualtieri, Giovanni, 2011. "A GIS-based interactive web decision support system for planning wind farms in Tuscany (Italy)," Renewable Energy, Elsevier, vol. 36(2), pages 754-763.
    11. Tyrychtr, J., 2017. "Analytical System with Decision Tree for Economic Benefit," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 9(4).
    12. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    13. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    14. Marta Kadłubek & Eleftherios Thalassinos & Joanna Domagała & Sandra Grabowska & Sebastian Saniuk, 2022. "Intelligent Transportation System Applications and Logistics Resources for Logistics Customer Service in Road Freight Transport Enterprises," Energies, MDPI, vol. 15(13), pages 1-27, June.
    15. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    16. Frank Hanssen & Roel May & Jiska van Dijk & Jan Ketil Rød, 2018. "Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-28, September.
    17. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    18. necula, sabina-cristiana & Radu, Laura-Diana, 2011. "Decision Support Systems Usefulness and A Practical Solution Based on Semantic Web Technologies," MPRA Paper 51547, University Library of Munich, Germany.
    19. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    20. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:541-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.