IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp287-299.html
   My bibliography  Save this article

A method for optimizing the location of wind farms

Author

Listed:
  • McWilliam, M.K.
  • van Kooten, G.C.
  • Crawford, C.

Abstract

The optimal location and configuration of wind farms in a large region is important information for policy makers, electricity system planners and wind farm developers. The model developed in this paper uses wind resource data, population data and transmission line locations to find the configuration that produces electricity at minimum cost. Several economic and regulatory scenarios were used to demonstrate the importance of each factor in siting optimally siting wind farms. We demonstrate how gradient based optimization could be applied to discover optimal wind farm location and size. Although the use of gradient based optimization makes the model sensitive to local minima, numerical smoothing is used to reduce this sensitivity.

Suggested Citation

  • McWilliam, M.K. & van Kooten, G.C. & Crawford, C., 2012. "A method for optimizing the location of wind farms," Renewable Energy, Elsevier, vol. 48(C), pages 287-299.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:287-299
    DOI: 10.1016/j.renene.2012.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lejeune, P. & Feltz, C., 2008. "Development of a decision support system for setting up a wind energy policy across the Walloon Region (southern Belgium)," Renewable Energy, Elsevier, vol. 33(11), pages 2416-2422.
    2. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    3. Ramírez-Rosado, Ignacio J. & García-Garrido, Eduardo & Fernández-Jiménez, L. Alfredo & Zorzano-Santamaría, Pedro J. & Monteiro, Cláudio & Miranda, Vladimiro, 2008. "Promotion of new wind farms based on a decision support system," Renewable Energy, Elsevier, vol. 33(4), pages 558-566.
    4. Rodman, Laura C. & Meentemeyer, Ross K., 2006. "A geographic analysis of wind turbine placement in Northern California," Energy Policy, Elsevier, vol. 34(15), pages 2137-2149, October.
    5. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    6. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    7. Voivontas, D. & Assimacopoulos, D. & Mourelatos, A. & Corominas, J., 1998. "Evaluation of Renewable Energy potential using a GIS decision support system," Renewable Energy, Elsevier, vol. 13(3), pages 333-344.
    8. Quinonez-Varela, G. & Cruden, A. & Graham, C. & Punton, B. & Blair, L. & Thomson, J., 2007. "A GIS/PSS planning tool for the initial grid connection assessment of renewable generation," Renewable Energy, Elsevier, vol. 32(5), pages 727-737.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    2. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    3. G. Cornelis van Kooten, 2012. "Natural Gas, Wind and Nuclear Options for Generating Electricity in a Carbon Constrained World," Working Papers 2012-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    4. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    5. Ribeiro, Alan Emanuel Duailibe & Arouca, Maurício Cardoso & Coelho, Daniel Moreira, 2016. "Electric energy generation from small-scale solar and wind power in Brazil: The influence of location, area and shape," Renewable Energy, Elsevier, vol. 85(C), pages 554-563.
    6. Yeh, Tsu-Ming & Huang, Yu-Lang, 2014. "Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP," Renewable Energy, Elsevier, vol. 66(C), pages 159-169.
    7. Jon Duan & G. Cornelis van Kooten & A. T. M. Hasibul Islam, 2023. "Calibration of Grid Models for Analyzing Energy Policies," Energies, MDPI, vol. 16(3), pages 1-21, January.
    8. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2016. "The exploitation of electricity production projects from Renewable Energy Sources for the social and economic development of remote communities. The case of Greece: An example to avoid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 341-349.
    9. Frank Hanssen & Roel May & Jiska van Dijk & Jan Ketil Rød, 2018. "Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-28, September.
    10. G. Cornelis van Kooten, 2015. "All you want to know about the Economics of Wind Power," Working Papers 2015-07, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    11. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    12. van Kooten, G. Cornelis & Withey, Patrick & Duan, Jon, 2020. "How big a battery?," Renewable Energy, Elsevier, vol. 146(C), pages 196-204.
    13. Wang, Longyan & Tan, Andy C.C. & Gu, Yuantong & Yuan, Jianping, 2015. "A new constraint handling method for wind farm layout optimization with lands owned by different owners," Renewable Energy, Elsevier, vol. 83(C), pages 151-161.
    14. Siyal, Shahid Hussain & Mörtberg, Ulla & Mentis, Dimitris & Welsch, Manuel & Babelon, Ian & Howells, Mark, 2015. "Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach," Energy, Elsevier, vol. 83(C), pages 447-461.
    15. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    2. Pilar Díaz-Cuevas, 2018. "GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain)," Energies, MDPI, vol. 11(10), pages 1-16, October.
    3. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    4. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    5. Mari, Riccardo & Bottai, Lorenzo & Busillo, Caterina & Calastrini, Francesca & Gozzini, Bernardo & Gualtieri, Giovanni, 2011. "A GIS-based interactive web decision support system for planning wind farms in Tuscany (Italy)," Renewable Energy, Elsevier, vol. 36(2), pages 754-763.
    6. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    7. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    8. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    9. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    10. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    12. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Frank Hanssen & Roel May & Jiska van Dijk & Jan Ketil Rød, 2018. "Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-28, September.
    14. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    15. Jangid, Jayant & Bera, Apurba Kumar & Joseph, Manoj & Singh, Vishal & Singh, T.P. & Pradhan, B.K. & Das, Sandipan, 2016. "Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1-10.
    16. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    17. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    18. Alphan, Hakan, 2024. "Incorporating visibility information into multi-criteria decision making (MCDM) for wind turbine deployment," Applied Energy, Elsevier, vol. 353(PB).
    19. Aydin, Nazli Yonca & Kentel, Elcin & Duzgun, Sebnem, 2010. "GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 364-373, January.
    20. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:287-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.