IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p5572-5577.html
   My bibliography  Save this article

Worldwide cheap and heavy oil productions: A long-term energy model

Author

Listed:
  • Guseo, Renato

Abstract

Crude oil, natural gas liquids, heavy oils, deepwater oils, and polar oils are non-renewable energy resources with increasing extraction costs. Two major definitions emerge: regular or 'cheap' oil and non-conventional or 'heavy' oil. Peaking time in conventional oil production has been a recent focus of debate. For two decades, non-conventional oils have been mixed with regular crude oil. Peaking time estimation and the rate at which production may be expected to decline, following the peak, are more difficult to determine. We propose a two-wave model for world oil production pattern and forecasting, based on the diffusion of innovation theories: a sequential multi-Bass model. Historical well-known shocks are confirmed, and new peaking times for crude oil and mixed oil are determined with corresponding depletion rates. In the final section, possible ties between the dynamics of oil extraction and refining capacities are discussed as a predictive symptom of an imminent mixed oil peak in 2016.

Suggested Citation

  • Guseo, Renato, 2011. "Worldwide cheap and heavy oil productions: A long-term energy model," Energy Policy, Elsevier, vol. 39(9), pages 5572-5577, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5572-5577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511003430
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greene, David L. & Hopson, Janet L. & Li, Jia, 2006. "Have we run out of oil yet? Oil peaking analysis from an optimist's perspective," Energy Policy, Elsevier, vol. 34(5), pages 515-531, March.
    2. Pesaran, M. Hashem & Samiei, Hossein, 1995. "Forecasting ultimate resource recovery," International Journal of Forecasting, Elsevier, vol. 11(4), pages 543-555, December.
    3. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    4. Kaufmann, Robert K., 1991. "Oil production in the lower 48 states : Reconciling curve fitting and econometric models," Resources and Energy, Elsevier, vol. 13(1), pages 111-127, April.
    5. Maggio, G. & Cacciola, G., 2009. "A variant of the Hubbert curve for world oil production forecasts," Energy Policy, Elsevier, vol. 37(11), pages 4761-4770, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ugo Bardi, 2016. "What Future for the Anthropocene? A Biophysical Interpretation," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-7, August.
    2. repec:eee:rensus:v:81:y:2018:i:p2:p:1879-1886 is not listed on IDEAS
    3. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
    4. Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
    5. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    6. Guidolin, Mariangela & Guseo, Renato, 2016. "The German energy transition: Modeling competition and substitution between nuclear power and Renewable Energy Technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1498-1504.
    7. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    8. Darda, Md Abud & Guseo, Renato & Mortarino, Cinzia, 2015. "Nonlinear production path and an alternative reserves estimate for South Asian natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 654-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5572-5577. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.