IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i3p1352-1362.html
   My bibliography  Save this article

The challenge of meeting Canada's greenhouse gas reduction targets

Author

Listed:
  • Hughes, Larry
  • Chaudhry, Nikhil

Abstract

In 2007, the Government of Canada announced its medium- and long-term greenhouse gas (GHG) emissions reduction plan entitled Turning the Corner, proposed emission cuts of 20% below 2006 levels by 2020 and 60-70% below 2006 levels by 2050. A report from a Canadian government advisory organization, the National Round Table on Environment and Economy (NRTEE), Achieving 2050: A carbon pricing policy for Canada, recommended "fast and deep" energy pathways to emissions reduction through large-scale electrification of Canada's economy by relying on a major expansion of hydroelectricity, adoption of carbon capture and storage for coal and natural gas, and increasing the use of nuclear. This paper examines the likelihood of the pathways being met by considering the report's proposed energy systems, their associated energy sources, and the magnitude of the changes. It shows that the pathways assume some combination of technological advances, access to secure energy supplies, or rapid installation in order to meet both the 2020 and 2050 targets. This analysis suggests that NRTEE's projections are optimistic and unlikely to be achieved. The analysis described in this paper can be applied to other countries to better understand and develop strategies that can help reduce global greenhouse gas emissions.

Suggested Citation

  • Hughes, Larry & Chaudhry, Nikhil, 2011. "The challenge of meeting Canada's greenhouse gas reduction targets," Energy Policy, Elsevier, vol. 39(3), pages 1352-1362, March.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1352-1362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00888-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bristow, David & Kennedy, Christopher A., 2010. "Potential of building-scale alternative energy to alleviate risk from the future price of energy," Energy Policy, Elsevier, vol. 38(4), pages 1885-1894, April.
    2. Rai, Varun & Victor, David G. & Thurber, Mark C., 2010. "Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies," Energy Policy, Elsevier, vol. 38(8), pages 4089-4098, August.
    3. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    4. Hughes, Larry, 2010. "Eastern Canadian crude oil supply and its implications for regional energy security," Energy Policy, Elsevier, vol. 38(6), pages 2692-2699, June.
    5. Blarke, M.B. & Lund, H., 2008. "The effectiveness of storage and relocation options in renewable energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1499-1507.
    6. Hughes, Larry, 2009. "The four 'R's of energy security," Energy Policy, Elsevier, vol. 37(6), pages 2459-2461, June.
    7. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2008. "Considerations on the backup of wind power: Operational backup," Applied Energy, Elsevier, vol. 85(9), pages 787-799, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    2. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hughes, Larry, 2010. "Meeting residential space heating demand with wind-generated electricity," Renewable Energy, Elsevier, vol. 35(8), pages 1765-1772.
    2. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.
    3. Hughes, Larry, 2012. "A generic framework for the description and analysis of energy security in an energy system," Energy Policy, Elsevier, vol. 42(C), pages 221-231.
    4. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
    5. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    6. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    7. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    8. Paska, Józef & Biczel, Piotr & Kłos, Mariusz, 2009. "Hybrid power systems – An effective way of utilising primary energy sources," Renewable Energy, Elsevier, vol. 34(11), pages 2414-2421.
    9. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    10. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    11. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    12. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    13. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    14. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    15. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    16. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    17. Bartha, Zoltán & Sáfrányné Gubik, Andrea & Tóthné Szita, Klára, 2013. "Intézményi megoldások, fejlődési modellek [Institutional solutions, development models]," MPRA Paper 50901, University Library of Munich, Germany.
    18. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    19. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    20. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1352-1362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.