IDEAS home Printed from
   My bibliography  Save this article

The evolution of economic and environmental cost for crystalline silicon photovoltaics


  • Oliver, M.
  • Jackson, T.


No abstract is available for this item.

Suggested Citation

  • Oliver, M. & Jackson, T., 2000. "The evolution of economic and environmental cost for crystalline silicon photovoltaics," Energy Policy, Elsevier, vol. 28(14), pages 1011-1021, November.
  • Handle: RePEc:eee:enepol:v:28:y:2000:i:14:p:1011-1021

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jackson, Tim, 1995. "Joint implementation and cost-effectiveness under the Framework Convention on Climate Change," Energy Policy, Elsevier, vol. 23(2), pages 117-138, February.
    2. Oliver, M. & Jackson, T., 1999. "The market for solar photovoltaics," Energy Policy, Elsevier, vol. 27(7), pages 371-385, July.
    3. Alsema, E. A. & Nieuwlaar, E., 2000. "Energy viability of photovoltaic systems," Energy Policy, Elsevier, vol. 28(14), pages 999-1010, November.
    4. Jackson, Tim, 1991. "Least-cost greenhouse planning supply curves for global warming abatement," Energy Policy, Elsevier, vol. 19(1), pages 35-46.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Adamson, Kerry-Ann, 2004. "Hydrogen from renewable resources--the hundred year commitment," Energy Policy, Elsevier, vol. 32(10), pages 1231-1242, July.
    2. Macintosh, Andrew & Wilkinson, Deb, 2011. "Searching for public benefits in solar subsidies: A case study on the Australian government's residential photovoltaic rebate program," Energy Policy, Elsevier, vol. 39(6), pages 3199-3209, June.
    3. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
    4. Muhammad Abrar Ul Haq & Muhammad Atif Nawaz & Farheen Akram & Vinodh K. Natarajan, 2020. "Theoretical Implications of Renewable Energy using Improved Cooking Stoves for Rural Households," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 546-554.
    5. Jackson, Tim & Oliver, Mark, 2000. "The viability of solar photovoltaics," Energy Policy, Elsevier, vol. 28(14), pages 983-988, November.
    6. Sivaraman, Deepak & Moore, Michael R., 2012. "Economic performance of grid-connected photovoltaics in California and Texas (United States): The influence of renewable energy and climate policies," Energy Policy, Elsevier, vol. 49(C), pages 274-287.
    7. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    8. Pacca, Sergio & Sivaraman, Deepak & Keoleian, Gregory A., 2007. "Parameters affecting the life cycle performance of PV technologies and systems," Energy Policy, Elsevier, vol. 35(6), pages 3316-3326, June.
    9. Radhi, Hassan, 2011. "On the value of decentralised PV systems for the GCC residential sector," Energy Policy, Elsevier, vol. 39(4), pages 2020-2027, April.
    10. Kaldellis, J.K. & Ninou, I. & Zafirakis, D., 2011. "Minimum long-term cost solution for remote telecommunication stations on the basis of photovoltaic-based hybrid power systems," Energy Policy, Elsevier, vol. 39(5), pages 2512-2527, May.
    11. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.
    12. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.
    13. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    14. van den Heuvel, Stijn T.A. & van den Bergh, Jeroen C.J.M., 2009. "Multilevel assessment of diversity, innovation and selection in the solar photovoltaic industry," Structural Change and Economic Dynamics, Elsevier, vol. 20(1), pages 50-60, March.
    15. Perez-Gallardo, J.R. & Azzaro-Pantel, C. & Astier, S. & Domenech, S. & Aguilar-Lasserre, A., 2014. "Ecodesign of photovoltaic grid-connected systems," Renewable Energy, Elsevier, vol. 64(C), pages 82-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timilsina, Govinda R. & Sikharulidze, Anna & Karapoghosyan, Eduard & Shatvoryan, Suren, 2017. "Development of marginal abatement cost curves for the building sector in Armenia and Georgia," Energy Policy, Elsevier, vol. 108(C), pages 29-43.
    2. Jackson, Tim & Oliver, Mark, 2000. "The viability of solar photovoltaics," Energy Policy, Elsevier, vol. 28(14), pages 983-988, November.
    3. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    4. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    5. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    6. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    7. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    8. Seng, Lim Yun & Lalchand, G. & Sow Lin, Gladys Mak, 2008. "Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia," Energy Policy, Elsevier, vol. 36(6), pages 2130-2142, June.
    9. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    10. Lim, Yun Seng & Lo, Chin Kim & Teh, Geok Bee, 2012. "Unsaturated polyester resin blended with MMA as potential host matrix for luminescent solar concentrator," Renewable Energy, Elsevier, vol. 45(C), pages 156-162.
    11. Solomon, Barry D., 1999. "New directions in emissions trading: the potential contribution of new institutional economics," Ecological Economics, Elsevier, vol. 30(3), pages 371-387, September.
    12. Dunstan, D. & Probert, D., 2002. "Raising the effectiveness of electricity generation (per unit of fossil-fuel combusted) by less conventional means," Applied Energy, Elsevier, vol. 73(2), pages 103-138, October.
    13. Böhringer, Christoph & Conrad, Klaus & Löschel, Andreas, 2000. "Carbon taxes and general joint implementation: an applied general equilibrium analysis for Germany and India," ZEW Discussion Papers 00-45, ZEW - Leibniz Centre for European Economic Research.
    14. Gaul, Chip & Carley, Sanya, 2012. "Solar set asides and renewable electricity certificates: Early lessons from North Carolina's experience with its renewable portfolio standard," Energy Policy, Elsevier, vol. 48(C), pages 460-469.
    15. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    16. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    17. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
    18. Jure Margeta & Zvonimir Glasnovic, 2011. "Hybrid RES-HEP Systems Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2219-2239, July.
    19. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    20. Anja Hansen & Jörn Budde & Yusuf Nadi Karatay & Annette Prochnow, 2016. "CUDe —Carbon Utilization Degree as an Indicator for Sustainable Biomass Use," Sustainability, MDPI, vol. 8(10), pages 1-17, October.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:28:y:2000:i:14:p:1011-1021. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.