IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p713-d1318787.html
   My bibliography  Save this article

Unconventional and Emerging Approaches to CO 2 Reduction

Author

Listed:
  • Jeffrey G. Bell

    (Department of Chemistry, Washington State University, Pullman, WA 99164, USA)

  • Thomas C. Underwood

    (Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA)

Abstract

This perspective highlights unconventional and emerging approaches to CO 2 reduction. These methods encompass the use of topological materials and 3D printing in electrochemistry and the broader fields of plasma- and magneto-electrochemistry. Sustainability in these methods offers a way to convert CO 2 into value-added fuels in a circular energy economy. We identify challenges of reducing CO 2 along sustainable pathways and detail ways that unconventional approaches can address these challenges. These include achieving high product selectivity toward desirable chemicals, high catalytic durability, high energy efficiency, and high conversion rates of CO 2 . Finally, we describe emerging impacts and opportunities of these unconventional approaches and key challenges.

Suggested Citation

  • Jeffrey G. Bell & Thomas C. Underwood, 2024. "Unconventional and Emerging Approaches to CO 2 Reduction," Sustainability, MDPI, vol. 16(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:713-:d:1318787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guene Lougou, Bachirou & Shuai, Yong & Zhang, Hao & Ahouannou, Clément & Zhao, Jiupeng & Kounouhewa, Basile Bruno & Tan, Heping, 2020. "Thermochemical CO2 reduction over NiFe2O4@alumina filled reactor heated by high-flux solar simulator," Energy, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Li, Xian & Wei, Liping & Lim, Chia Wei & Chen, Jialing & Chu, Peng & Lipiński, Wojciech & Yan, Ning & Dai, Yanjun & Wang, Chi-Hwa, 2022. "Experimental and numerical study on thermal performance of an indirectly irradiated solar reactor with a clapboard-type internally circulating fluidized bed," Applied Energy, Elsevier, vol. 305(C).
    3. Yabibal Getahun Dessie & Bachirou Guene Lougou & Qi Hong & Tan Heping & Zhang Juqi & Gao Baohai & Islam Md Arafat, 2020. "Thermal Performance Analysis of a Solar Reactor Designed for Syngas Production," Energies, MDPI, vol. 13(13), pages 1-20, July.
    4. Guene Lougou, Bachirou & Wu, Lianxuan & Ma, Danni & Geng, Boxi & Jiang, Boshu & Han, Donmei & Zhang, Hao & Łapka, Piotr & Shuai, Yong, 2023. "Efficient conversion of solar energy through a macroporous ceramic receiver coupling heat transfer and thermochemical reactions," Energy, Elsevier, vol. 271(C).
    5. Pan, Ruming & Yang, Youwei & Lougou, Bachirou Guene & Wu, Lianxuan & Wang, Wei & Guo, Yanming & Shuai, Yong, 2024. "Thermal performance evaluation of a novel solar-driven pyrolysis reactor," Energy, Elsevier, vol. 313(C).
    6. Jiang, Boshu & Guene Lougou, Bachirou & Zhang, Hao & Geng, Boxi & Wu, Lianxuan & Shuai, Yong, 2022. "Preparation and solar thermochemical properties analysis of NiFe2O4@SiC/ @Si3N4 for high-performance CO2-splitting," Applied Energy, Elsevier, vol. 328(C).
    7. Liu, Yun & Xie, Ling-tian & Shen, Wen-ran & Xu, Chao & Zhao, Bo-yang, 2023. "Relative flow direction modes and gradual porous parameters for radiation transport and interactions with thermochemical reaction in porous volumetric solar reactor," Renewable Energy, Elsevier, vol. 203(C), pages 612-621.
    8. Li, Qing & Wang, Jikang & Qiu, Yu & Xu, Mingpan & Wei, Xiudong, 2021. "A modified indirect flux mapping system for high-flux solar simulators," Energy, Elsevier, vol. 235(C).
    9. Li, Sha & Haussener, Sophia, 2023. "Design and operational guidelines of solar-driven catalytic conversion of CO2 and H2 to fuels," Applied Energy, Elsevier, vol. 334(C).
    10. Shuai, Yong & Zhang, Hao & Guene Lougou, Bachirou & Jiang, Boshu & Mustafa, Azeem & Wang, Chi-Hwa & Wang, Fuqiang & Zhao, Jiupeng, 2021. "Solar-driven thermochemical redox cycles of ZrO2 supported NiFe2O4 for CO2 reduction into chemical energy," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:713-:d:1318787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.