IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8556-d973858.html
   My bibliography  Save this article

Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage

Author

Listed:
  • Stefano Padula

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy)

  • Claudio Tregambi

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
    Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Maurizio Troiano

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy
    Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy)

  • Almerinda Di Benedetto

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy)

  • Piero Salatino

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy)

  • Gianluca Landi

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy)

  • Roberto Solimene

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Vincenzo Tecchio 80, 80125 Napoli, Italy)

Abstract

The performance of a perovskite-based oxygen carrier for the partial oxidation of methane in thermochemical energy storage applications has been investigated. A synthetic perovskite with formula La 0.6 Sr 0.4 FeO 3 has been scrutinized for Chemical Looping Reforming (CLR) of CH 4 under fixed-bed and fluidized-bed conditions. Temperature-programmed reduction and oxidation steps were carried out under fixed-bed conditions, together with isothermal reduction/oxidation cycles, to evaluate long-term perovskite performance. Under fluidized-bed conditions, isothermal reduction/oxidation cycles were carried out as well. Results obtained under fixed-bed and fluidized-bed conditions were compared in terms of oxygen carrier reactivity and stability. The oxygen carrier showed good reactivity and stability in the range 800–1000 °C. An overall yield of 0.6 Nm 3 of syngas per kg of perovskite can be reached per cycle. The decomposition of CH 4 catalyzed by the reduced oxide can also occur during the reduction step. However, deposited carbon is easily re-gasified through the Boudouard reaction, without affecting the reactivity of the material. Fluidized-bed tests showed higher conversion rates compared to fixed-bed conditions and allowed better control of CH 4 decomposition, with a H 2 :CO ratio of around 2 and CO selectivity of around 0.8. However, particle attrition was observed and might be responsible for a loss of the inventory of up to 9% w .

Suggested Citation

  • Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8556-:d:973858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    2. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    3. Zhang, Huili & Benoit, Hadrien & Perez-Lopèz, Inmaculada & Flamant, Gilles & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency solar power towers using particle suspensions as heat carrier in the receiver and in the thermal energy storage," Renewable Energy, Elsevier, vol. 111(C), pages 438-446.
    4. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    5. Gokon, Nobuyuki & Kumaki, Satoshi & Miyaguchi, Yosuke & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyunseok, 2019. "Development of a 5kWth internally circulating fluidized bed reactor containing quartz sand for continuously-fed coal-coke gasification and a beam-down solar concentrating system," Energy, Elsevier, vol. 166(C), pages 1-16.
    6. Hoskins, Amanda L. & Millican, Samantha L. & Czernik, Caitlin E. & Alshankiti, Ibraheam & Netter, Judy C. & Wendelin, Timothy J. & Musgrave, Charles B. & Weimer, Alan W., 2019. "Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle," Applied Energy, Elsevier, vol. 249(C), pages 368-376.
    7. Tescari, S. & Singh, A. & Agrafiotis, C. & de Oliveira, L. & Breuer, S. & Schlögl-Knothe, B. & Roeb, M. & Sattler, C., 2017. "Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant," Applied Energy, Elsevier, vol. 189(C), pages 66-75.
    8. Guene Lougou, Bachirou & Shuai, Yong & Zhang, Hao & Ahouannou, Clément & Zhao, Jiupeng & Kounouhewa, Basile Bruno & Tan, Heping, 2020. "Thermochemical CO2 reduction over NiFe2O4@alumina filled reactor heated by high-flux solar simulator," Energy, Elsevier, vol. 197(C).
    9. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    2. Sara Pascual & Pilar Lisbona & Luis M. Romeo, 2022. "Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects," Energies, MDPI, vol. 15(22), pages 1-32, November.
    3. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    4. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    5. Seon Tae Kim & Haruka Miura & Hiroki Takasu & Yukitaka Kato & Alexandr Shkatulov & Yuri Aristov, 2019. "Adapting the MgO-CO 2 Working Pair for Thermochemical Energy Storage by Doping with Salts: Effect of the (LiK)NO 3 Content," Energies, MDPI, vol. 12(12), pages 1-13, June.
    6. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    7. Xie, Peng & Jin, Lu & Qiao, Geng & Lin, Cheng & Barreneche, Camila & Ding, Yulong, 2022. "Thermal energy storage for electric vehicles at low temperatures: Concepts, systems, devices and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
    10. Jaroslav Vrchota & Martin Pech & Ladislav Rolínek & Jiří Bednář, 2020. "Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review," Sustainability, MDPI, vol. 12(15), pages 1-47, July.
    11. Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
    12. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    13. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.
    14. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Ahmadisedigh, Hossein & Gosselin, Louis, 2022. "How can combined heating and cooling networks benefit from thermal energy storage? Minimizing lifetime cost for different scenarios," Energy, Elsevier, vol. 243(C).
    16. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    17. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Saad, Y. & Younes, R. & Abboudi, S. & Ilinca, A., 2018. "Hydro-pneumatic storage for wind-diesel electricity generation in remote sites," Applied Energy, Elsevier, vol. 231(C), pages 1159-1178.
    19. Michela Lanchi & Luca Turchetti & Salvatore Sau & Raffaele Liberatore & Stefano Cerbelli & Maria Anna Murmura & Maria Cristina Annesini, 2020. "A Discussion of Possible Approaches to the Integration of Thermochemical Storage Systems in Concentrating Solar Power Plants," Energies, MDPI, vol. 13(18), pages 1-26, September.
    20. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8556-:d:973858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.