IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp1-16.html
   My bibliography  Save this article

Development of a 5kWth internally circulating fluidized bed reactor containing quartz sand for continuously-fed coal-coke gasification and a beam-down solar concentrating system

Author

Listed:
  • Gokon, Nobuyuki
  • Kumaki, Satoshi
  • Miyaguchi, Yosuke
  • Bellan, Selvan
  • Kodama, Tatsuya
  • Cho, Hyunseok

Abstract

The operational mode of a batch-type fluidized bed reactor containing quartz sand and coal-coke particles was tested under xenon arc lamp (Xe-light) illumination to develop processes for the continuous feeding and gasification of coke particles in the quartz sand fluidized bed. This paper focuses on the fluidizing, heating, and steam gasification performances of a windowed internally circulating fluidized bed reactor. The operational modes explored in this study were: (1) elevated temperature processes associated with the use of Xe-light radiation to reach gasification temperatures, and, (2) the gasification process driving steam gasification at high-temperatures, working with stream gasification of continuously-fed coal-coke. The gasification performances were used to evaluate the performance of quartz sand as a thermal-transfer/sensible heat-storage medium. The peak rate of gas production was greatly enhanced for the high volume fraction of coal-coke. In addition, the light-to-energy conversion rate of 11.0–13.2% and carbon conversion rate up to 80% were reached in the simplified distributor structure of gasification reactor.

Suggested Citation

  • Gokon, Nobuyuki & Kumaki, Satoshi & Miyaguchi, Yosuke & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyunseok, 2019. "Development of a 5kWth internally circulating fluidized bed reactor containing quartz sand for continuously-fed coal-coke gasification and a beam-down solar concentrating system," Energy, Elsevier, vol. 166(C), pages 1-16.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:1-16
    DOI: 10.1016/j.energy.2018.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gokon, Nobuyuki & Izawa, Takuya & Kodama, Tatsuya, 2015. "Steam gasification of coal cokes by internally circulating fluidized-bed reactor by concentrated Xe-light radiation for solar syngas production," Energy, Elsevier, vol. 79(C), pages 264-272.
    2. Murray, Jean P. & Fletcher, Edward A., 1994. "Reaction of steam with cellulose in a fluidized bed using concentrated sunlight," Energy, Elsevier, vol. 19(10), pages 1083-1098.
    3. Zedtwitz, P.v. & Steinfeld, A., 2003. "The solar thermal gasification of coal — energy conversion efficiency and CO2 mitigation potential," Energy, Elsevier, vol. 28(5), pages 441-456.
    4. Flechsenhar, Martin & Sasse, Christian, 1995. "Solar gasification of biomass using oil shale and coal as candidate materials," Energy, Elsevier, vol. 20(8), pages 803-810.
    5. Ozlu, Sinan & Dincer, Ibrahim, 2016. "Performance assessment of a new solar energy-based multigeneration system," Energy, Elsevier, vol. 112(C), pages 164-178.
    6. Li, Xian & Shen, Ye & Kan, Xiang & Hardiman, Timothy Kurnia & Dai, Yanjun & Wang, Chi-Hwa, 2018. "Thermodynamic assessment of a solar/autothermal hybrid gasification CCHP system with an indirectly radiative reactor," Energy, Elsevier, vol. 142(C), pages 201-214.
    7. Villafán-Vidales, H.I. & Arancibia-Bulnes, C.A. & Riveros-Rosas, D. & Romero-Paredes, H. & Estrada, C.A., 2017. "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 894-908.
    8. Manenti, Flavio & Leon-Garzon, Andres R. & Ravaghi-Ardebili, Zohreh & Pirola, Carlo, 2014. "Assessing thermal energy storage technologies of concentrating solar plants for the direct coupling with chemical processes. The case of solar-driven biomass gasification," Energy, Elsevier, vol. 75(C), pages 45-52.
    9. Hathaway, Brandon J. & Honda, Masanori & Kittelson, David B. & Davidson, Jane H., 2013. "Steam gasification of plant biomass using molten carbonate salts," Energy, Elsevier, vol. 49(C), pages 211-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    2. Gokon, Nobuyuki & Yawata, Takehiro & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyun-Seok, 2019. "Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3-δ and BaySr1-yCoO3-δ redox system for thermochemical energy storage at high temperatures," Energy, Elsevier, vol. 171(C), pages 971-980.
    3. Villafán-Vidales, H.I. & Arancibia-Bulnes, C.A. & Riveros-Rosas, D. & Romero-Paredes, H. & Estrada, C.A., 2017. "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 894-908.
    4. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    5. Rodat, Sylvain & Abanades, Stéphane & Boujjat, Houssame & Chuayboon, Srirat, 2020. "On the path toward day and night continuous solar high temperature thermochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Zhong, Dian & Zeng, Kuo & Li, Jun & Yang, Xinyi & Song, Yang & Zhu, Youjian & Flamant, Gilles & Nzihou, Ange & Yang, Haiping & Chen, Hanping, 2021. "3E analysis of a biomass-to-liquids production system based on solar gasification," Energy, Elsevier, vol. 217(C).
    8. Bellan, Selvan & Gokon, Nobuyuki & Matsubara, Koji & Cho, Hyun Seok & Kodama, Tatsuya, 2018. "Heat transfer analysis of 5kWth circulating fluidized bed reactor for solar gasification using concentrated Xe light radiation," Energy, Elsevier, vol. 160(C), pages 245-256.
    9. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    10. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
    11. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    12. Haneol Kim & Jongkyu Kim, 2021. "Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition," Energies, MDPI, vol. 14(20), pages 1-21, October.
    13. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    14. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    15. M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.
    16. Sánchez, M. & Clifford, B. & Nixon, J.D., 2018. "Modelling and evaluating a solar pyrolysis system," Renewable Energy, Elsevier, vol. 116(PA), pages 630-638.
    17. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    19. Curcio, Axel & Rodat, Sylvain & Vuillerme, Valéry & Abanades, Stéphane, 2022. "Design and validation of reactant feeding control strategies for the solar-autothermal hybrid gasification of woody biomass," Energy, Elsevier, vol. 254(PC).
    20. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.