IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v249y2019icp368-376.html
   My bibliography  Save this article

Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle

Author

Listed:
  • Hoskins, Amanda L.
  • Millican, Samantha L.
  • Czernik, Caitlin E.
  • Alshankiti, Ibraheam
  • Netter, Judy C.
  • Wendelin, Timothy J.
  • Musgrave, Charles B.
  • Weimer, Alan W.

Abstract

Solar thermochemical hydrogen production from water is a path towards a carbon-free sustainable hydrogen economy. Here, isothermal on-sun hydrogen production is demonstrated using active iron aluminate (hercynite) particles contained in dual fluidized bed reactors. The two fluidized beds were held in a single cavity solar receiver that was heated with a 10 kW high flux solar furnace. During 8 h of on-sun testing, 5.3 L of H2 were generated with an average productivity of 597 µmol H2/g using an intermittent process with optimized redox cycle times. Redox cycling was performed isothermally and continuously with equivalent oxidation and reduction times producing 547 µmol H2/g over two cycles. These results show excellent agreement with the H2 production measured in an 800X scaled-down electrically heated laboratory stagnation flow reactor and surpass on-sun H2 production of current benchmark materials. The effect of environmental variability on the incident solar radiation and hydrogen production is evaluated during on-sun testing. Finally, a discussion of the important factors for scalability of the process to commercial applications is provided, highlighting the importance of robust containment and active materials. This work links current materials research and development with commercial implementation in an on-sun process and demonstrates the viability of solar thermochemical hydrogen production that leverages continuous isothermal redox cycling.

Suggested Citation

  • Hoskins, Amanda L. & Millican, Samantha L. & Czernik, Caitlin E. & Alshankiti, Ibraheam & Netter, Judy C. & Wendelin, Timothy J. & Musgrave, Charles B. & Weimer, Alan W., 2019. "Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle," Applied Energy, Elsevier, vol. 249(C), pages 368-376.
  • Handle: RePEc:eee:appene:v:249:y:2019:i:c:p:368-376
    DOI: 10.1016/j.apenergy.2019.04.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamaura, Y. & Steinfeld, A. & Kuhn, P. & Ehrensberger, K., 1995. "Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle," Energy, Elsevier, vol. 20(4), pages 325-330.
    2. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
    3. Villafán-Vidales, H.I. & Arancibia-Bulnes, C.A. & Riveros-Rosas, D. & Romero-Paredes, H. & Estrada, C.A., 2017. "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 894-908.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    2. Behdad Shadidi & Gholamhassan Najafi & Talal Yusaf, 2021. "A Review of Hydrogen as a Fuel in Internal Combustion Engines," Energies, MDPI, vol. 14(19), pages 1-20, September.
    3. Sun, Qi & Gao, Qunxiang & Zhang, Ping & Peng, Wei & Chen, Songzhe, 2020. "Modeling sulfuric acid decomposition in a bayonet heat exchanger in the iodine-sulfur cycle for hydrogen production," Applied Energy, Elsevier, vol. 277(C).
    4. Vidal, Alfonso & Gonzalez, Aurelio & Denk, Thorsten, 2020. "A 100 kW cavity-receiver reactor with an integrated two-step thermochemical cycle: Thermal performance under solar transients," Renewable Energy, Elsevier, vol. 153(C), pages 270-279.
    5. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    6. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
    7. Lidor, Alon & Aschwanden, Yves & Häseli, Jamina & Reckinger, Pit & Haueter, Philipp & Steinfeld, Aldo, 2023. "High-temperature heat recovery from a solar reactor for the thermochemical redox splitting of H2O and CO2," Applied Energy, Elsevier, vol. 329(C).
    8. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    9. Wang, Bo & Li, Xian & Zhu, Xuancan & Wang, Yuesen & Tian, Tian & Dai, Yanjun & Wang, Chi-Hwa, 2023. "An epitrochoidal rotary reactor for solar-driven hydrogen production based on the redox cycling of ceria: Thermodynamic analysis and geometry optimization," Energy, Elsevier, vol. 270(C).
    10. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    11. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
    2. Haneol Kim & Jongkyu Kim, 2021. "Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition," Energies, MDPI, vol. 14(20), pages 1-21, October.
    3. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    4. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    5. Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
    6. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    7. Gokon, Nobuyuki & Yawata, Takehiro & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyun-Seok, 2019. "Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3-δ and BaySr1-yCoO3-δ redox system for thermochemical energy storage at high temperatures," Energy, Elsevier, vol. 171(C), pages 971-980.
    8. Rhodes, Nathan R. & Bobek, Michael M. & Allen, Kyle M. & Hahn, David W., 2015. "Investigation of long term reactive stability of ceria for use in solar thermochemical cycles," Energy, Elsevier, vol. 89(C), pages 924-931.
    9. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    10. Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
    11. Kong, Hui & Wang, Jian & Zheng, Hongfei & Wang, Hongsheng & Zhang, Jun & Yu, Zhufeng & Bo, Zheng, 2022. "Techno-economic analysis of a solar thermochemical cycle-based direct coal liquefaction system for low-carbon oil production," Energy, Elsevier, vol. 239(PC).
    12. Kaneko, H & Hosokawa, Y & Kojima, N & Gokon, N & Hasegawa, N & Kitamura, M & Tamaura, Y, 2001. "Studies on metal oxides suitable for enhancement of the O2-releasing step in water splitting by the MnFe2O4–Na2CO3 system," Energy, Elsevier, vol. 26(10), pages 919-929.
    13. Thomas Pregger & Günter Schiller & Felix Cebulla & Ralph-Uwe Dietrich & Simon Maier & André Thess & Andreas Lischke & Nathalie Monnerie & Christian Sattler & Patrick Le Clercq & Bastian Rauch & Markus, 2019. "Future Fuels—Analyses of the Future Prospects of Renewable Synthetic Fuels," Energies, MDPI, vol. 13(1), pages 1-36, December.
    14. Alonso, Elisa & Pérez-Rábago, Carlos & Licurgo, Javier & Gallo, Alessandro & Fuentealba, Edward & Estrada, Claudio A., 2017. "Experimental aspects of CuO reduction in solar-driven reactors: Comparative performance of a rotary kiln and a packed-bed," Renewable Energy, Elsevier, vol. 105(C), pages 665-673.
    15. Thanda, V.K. & Fend, Th. & Laaber, D. & Lidor, A. & von Storch, H. & Säck, J.P. & Hertel, J. & Lampe, J. & Menz, S. & Piesche, G. & Berger, S. & Lorentzou, S. & Syrigou, M. & Denk, Th. & Gonzales-Pard, 2022. "Experimental investigation of the applicability of a 250 kW ceria receiver/reactor for solar thermochemical hydrogen generation," Renewable Energy, Elsevier, vol. 198(C), pages 389-398.
    16. Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Arancibia-Bulnes, Camilo A. & Valadés-Pelayo, Patricio J. & Villafán-Vidales, Heidi Isabel, 2021. "Solar integrated hydrothermal processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    18. Haeussler, Anita & Abanades, Stéphane & Julbe, Anne & Jouannaux, Julien & Cartoixa, Bruno, 2020. "Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor," Energy, Elsevier, vol. 201(C).
    19. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    20. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:249:y:2019:i:c:p:368-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.