IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i1p265-276.html
   My bibliography  Save this article

Review of study on solid particle solar receivers

Author

Listed:
  • Tan, Taide
  • Chen, Yitung

Abstract

The solid particle solar receiver (SPSR) is a direct absorption central receiver that uses solid particles enclosed in a cavity to absorb concentrated solar radiation. The SPSR is a candidate for applications of solar energy in a thermo-chemical water-splitting process to produce hydrogen. This paper presents a review of the study on SPSRs, including the idea originality, design concepts, advantages and disadvantages, the solid particle identification, a conceptual design in Sandia National Laboratories and detailed studies performed on this design. The geometry, particle size, calculating domain selection, the wind effect, the aerowindow and other factors which influence the cavity efficiency have been studied and the results are presented.

Suggested Citation

  • Tan, Taide & Chen, Yitung, 2010. "Review of study on solid particle solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 265-276, January.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:265-276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00185-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abanades, Stéphane & Charvin, Patrice & Flamant, Gilles & Neveu, Pierre, 2006. "Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy," Energy, Elsevier, vol. 31(14), pages 2805-2822.
    2. Sadineni, S.B. & Hurt, R. & Halford, C.K. & Boehm, R.F., 2008. "Theory and experimental investigation of a weir-type inclined solar still," Energy, Elsevier, vol. 33(1), pages 71-80.
    3. Tamaura, Y. & Steinfeld, A. & Kuhn, P. & Ehrensberger, K., 1995. "Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle," Energy, Elsevier, vol. 20(4), pages 325-330.
    4. Deshmukh, Sachin S. & Boehm, Robert F., 2008. "Review of modeling details related to renewably powered hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2301-2330, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
    2. Fang, Wenchao & Chen, Sheng & Xu, Jingying & Zeng, Kuo, 2021. "Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power," Energy, Elsevier, vol. 217(C).
    3. Brantley H. Mills & Clifford K. Ho & Nathaniel R. Schroeder & Reid Shaeffer & Hendrik F. Laubscher & Kevin J. Albrecht, 2022. "Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications," Energies, MDPI, vol. 15(5), pages 1-20, February.
    4. Alonso, Elisa & Pérez-Rábago, Carlos & Licurgo, Javier & Gallo, Alessandro & Fuentealba, Edward & Estrada, Claudio A., 2017. "Experimental aspects of CuO reduction in solar-driven reactors: Comparative performance of a rotary kiln and a packed-bed," Renewable Energy, Elsevier, vol. 105(C), pages 665-673.
    5. Xie, Xiangyu & Xu, Haoran & Gan, Di & Ni, Mingjiang & Yan, Jianhua & Cen, Kefa & Xiao, Gang, 2022. "A sliding-bed particle solar receiver with controlling particle flow velocity for high-temperature thermal power generation," Renewable Energy, Elsevier, vol. 183(C), pages 41-50.
    6. Zhang, Huili & Benoit, Hadrien & Gauthier, Daniel & Degrève, Jan & Baeyens, Jan & López, Inmaculada Pérez & Hemati, Mehrdji & Flamant, Gilles, 2016. "Particle circulation loops in solar energy capture and storage: Gas–solid flow and heat transfer considerations," Applied Energy, Elsevier, vol. 161(C), pages 206-224.
    7. Sarker, M.R.I. & Saha, Manabendra & Rahman, Md Sazan & Beg, R.A., 2016. "Recirculating metallic particles for the efficiency enhancement of concentrated solar receivers," Renewable Energy, Elsevier, vol. 96(PA), pages 850-862.
    8. Li Wang & Long Yang & Junjie Liu & Pei Wang, 2021. "Study on Spectral Radiative Heat Transfer Characteristics of a Windowed Receiver with Particle Curtain," Energies, MDPI, vol. 14(10), pages 1-16, May.
    9. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    10. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    11. Gimeno-Furio, A. & Hernandez, L. & Martinez-Cuenca, R. & Mondragón, R. & Vela, A. & Cabedo, L. & Barreneche, C. & Iacob, M., 2020. "New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications," Renewable Energy, Elsevier, vol. 152(C), pages 1-8.
    12. Tawfik, Mohamed, 2022. "A review of directly irradiated solid particle receivers: Technologies and influencing parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Fang, Wenchao & Chen, Sheng & Shi, Shuo, 2022. "Dynamic characteristics and real-time control of a particle-to-sCO2 moving bed heat exchanger assisted by BP neural network," Energy, Elsevier, vol. 256(C).
    14. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Lucía Arribas & José González-Aguilar & Manuel Romero, 2018. "Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor," Energies, MDPI, vol. 11(9), pages 1-15, September.
    16. Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2021. "A mathematical model to assess the influence of transients on a refractory-lined solar receiver," Renewable Energy, Elsevier, vol. 167(C), pages 217-235.
    17. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    18. Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2022. "Modelled annual thermal performance of a 50MWth refractory-lined particle-laden solar receiver operating above 1000°C," Renewable Energy, Elsevier, vol. 197(C), pages 1081-1093.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso, Elisa & Pérez-Rábago, Carlos & Licurgo, Javier & Gallo, Alessandro & Fuentealba, Edward & Estrada, Claudio A., 2017. "Experimental aspects of CuO reduction in solar-driven reactors: Comparative performance of a rotary kiln and a packed-bed," Renewable Energy, Elsevier, vol. 105(C), pages 665-673.
    2. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    3. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    4. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    5. Kalidasa Murugavel, K. & Anburaj, P. & Samuel Hanson, R. & Elango, T., 2013. "Progresses in inclined type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 364-377.
    6. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    7. Rahbar, N. & Esfahani, J.A., 2013. "Productivity estimation of a single-slope solar still: Theoretical and numerical analysis," Energy, Elsevier, vol. 49(C), pages 289-297.
    8. Sonja Knežević & Darko Šošić, 2024. "Isolated Work of a Multi-Energy Carrier Microgrid," Energies, MDPI, vol. 17(12), pages 1-15, June.
    9. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    10. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    11. Turhan, Tugce & Güvenilir, Yuksel Avcıbası & Sahiner, Nurettin, 2013. "Micro poly(3-sulfopropyl methacrylate) hydrogel synthesis for in situ metal nanoparticle preparation and hydrogen generation from hydrolysis of NaBH4," Energy, Elsevier, vol. 55(C), pages 511-518.
    12. Rhodes, Nathan R. & Bobek, Michael M. & Allen, Kyle M. & Hahn, David W., 2015. "Investigation of long term reactive stability of ceria for use in solar thermochemical cycles," Energy, Elsevier, vol. 89(C), pages 924-931.
    13. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    14. G. García Clúa, José & Mantz, Ricardo J. & De Battista, Hernán, 2011. "Evaluation of hydrogen production capabilities of a grid-assisted wind-H2 system," Applied Energy, Elsevier, vol. 88(5), pages 1857-1863, May.
    15. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    16. Liu, Xiangyu & Zhang, Hao & Hong, Hui & Jin, Hongguang, 2020. "Experimental study on honeycomb reactor using methane via chemical looping cycle for solar syngas," Applied Energy, Elsevier, vol. 268(C).
    17. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    18. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Cabeza, Luisa F. & Solé, Aran & Fontanet, Xavier & Barreneche, Camila & Jové, Aleix & Gallas, Manuel & Prieto, Cristina & Fernández, A. Inés, 2017. "Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept," Applied Energy, Elsevier, vol. 185(P1), pages 836-845.
    20. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:265-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.