IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015006.html
   My bibliography  Save this article

Dynamic characteristics and real-time control of a particle-to-sCO2 moving bed heat exchanger assisted by BP neural network

Author

Listed:
  • Fang, Wenchao
  • Chen, Sheng
  • Shi, Shuo

Abstract

The transient response of a particle-to-sCO2 moving bed heat exchanger (MBHE) is investigated by a continuum model when perturbations are applied to the particle inlet temperature, sCO2 inlet temperature, and the sCO2 mass flow rate. Upon disturbance, the outlet temperatures of the sCO2 and particle flows deviate from the designed values and gradually approach a new steady state. The transient process can be described by exponential functions when the disturbance is applied to one of the input parameters while the transition becomes unpredictable when multiple input parameters are simultaneously varied. Two real-time control strategies are then adopted to maintain the sCO2 outlet temperature at its designed value. In strategy 1, the particle flow rate is adjusted; In strategy 2, the sCO2 flow is divided into two branches: one branch flows through the heat exchanger for heating, and the other enters a bypass. The values of the adjusting parameters are instantly determined based on the BP neural network. By setting 50 random disturbance cases, we demonstrate that the control strategy based on sCO2 bypass and BP neural network can effectively make the outlet temperatures of particle and sCO2 flows reach their designed values with minimal deviations.

Suggested Citation

  • Fang, Wenchao & Chen, Sheng & Shi, Shuo, 2022. "Dynamic characteristics and real-time control of a particle-to-sCO2 moving bed heat exchanger assisted by BP neural network," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015006
    DOI: 10.1016/j.energy.2022.124597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Wenchao & Chen, Sheng & Xu, Jingying & Zeng, Kuo, 2021. "Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power," Energy, Elsevier, vol. 217(C).
    2. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle," Applied Energy, Elsevier, vol. 199(C), pages 247-263.
    3. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems," Energy, Elsevier, vol. 124(C), pages 752-771.
    4. Iverson, Brian D. & Conboy, Thomas M. & Pasch, James J. & Kruizenga, Alan M., 2013. "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Elsevier, vol. 111(C), pages 957-970.
    5. Tan, Taide & Chen, Yitung, 2010. "Review of study on solid particle solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 265-276, January.
    6. Singh, Rajinesh & Miller, Sarah A. & Rowlands, Andrew S. & Jacobs, Peter A., 2013. "Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant," Energy, Elsevier, vol. 50(C), pages 194-204.
    7. Hojjat, Mohammad, 2020. "Nanofluids as coolant in a shell and tube heat exchanger: ANN modeling and multi-objective optimization," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    8. Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles," Applied Energy, Elsevier, vol. 231(C), pages 1019-1032.
    9. Fernández-Torrijos, M. & Albrecht, K.J. & Ho, C.K., 2018. "Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control," Applied Energy, Elsevier, vol. 226(C), pages 595-606.
    10. Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Sinan Uguz & Osman Ipek, 2022. "Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1393-1417, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    2. Gan, Di & Zhu, Peiwang & Xu, Haoran & Xie, Xiangyu & Chai, Fengyuan & Gong, Jueyuan & Li, Jiasong & Xiao, Gang, 2023. "Experimental and simulation study of Mn–Fe particles in a controllable-flow particle solar receiver for high-temperature thermochemical energy storage," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yuegeng & Zhang, Xuwei & Liu, Ming & Yan, Junjie & Liu, Jiping, 2018. "Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications," Energy, Elsevier, vol. 148(C), pages 839-854.
    2. Wang, Xurong & Li, Xiaoxiao & Li, Qibin & Liu, Lang & Liu, Chao, 2020. "Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions," Applied Energy, Elsevier, vol. 261(C).
    3. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle," Applied Energy, Elsevier, vol. 199(C), pages 247-263.
    4. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
    5. Ma, Yuegeng & Morozyuk, Tatiana & Liu, Ming & Yan, Junjie & Liu, Jiping, 2019. "Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach," Applied Energy, Elsevier, vol. 242(C), pages 1134-1154.
    6. Xingyan, Bian & Wang, Xuan & Wang, Rui & Cai, Jinwen & Tian, Hua & Shu, Gequn, 2022. "Optimal selection of supercritical CO2 Brayton cycle layouts based on part-load performance," Energy, Elsevier, vol. 256(C).
    7. Fernández-Torrijos, M. & Albrecht, K.J. & Ho, C.K., 2018. "Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control," Applied Energy, Elsevier, vol. 226(C), pages 595-606.
    8. Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
    9. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    10. Battisti, Felipe G. & Cardemil, José M. & da Silva, Alexandre K., 2016. "A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid," Energy, Elsevier, vol. 112(C), pages 908-916.
    11. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
    12. Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
    13. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
    14. George Stamatellos & Tassos Stamatelos, 2022. "Effect of Actual Recuperators’ Effectiveness on the Attainable Efficiency of Supercritical CO 2 Brayton Cycles for Solar Thermal Power Plants," Energies, MDPI, vol. 15(20), pages 1-20, October.
    15. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
    16. de la Calle, Alberto & Bayon, Alicia & Soo Too, Yen Chean, 2018. "Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions," Energy, Elsevier, vol. 153(C), pages 1016-1027.
    17. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    18. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    19. Zhang, Lianjie & Deng, Tianrui & Klemeš, Jiří Jaromír & Zeng, Min & Ma, Ting & Wang, Qiuwang, 2021. "Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions," Energy, Elsevier, vol. 237(C).
    20. Fang, Wenchao & Chen, Sheng & Xu, Jingying & Zeng, Kuo, 2021. "Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.