IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v168y2022ics030142152200369x.html
   My bibliography  Save this article

The role of electric vehicles in decarbonising Australia’s road transport sector: modelling ambitious scenarios

Author

Listed:
  • Broadbent, Gail
  • Allen, Cameron
  • Wiedmann, Thomas
  • Metternicht, Graciela

Abstract

Transitioning to net-zero greenhouse gas (GHG) emissions by 2050 is becoming increasingly urgent, requiring accelerated efforts to decarbonise all economic sectors, including transport, a growing emissions source. A transition to battery electric vehicles (BEV) would accelerate the decarbonisation of road transport and provide other benefits. But in Australia, BEV uptake has been negligible, and the scale and pace required to reach net-zero emissions by 2050 has not been addressed to date.

Suggested Citation

  • Broadbent, Gail & Allen, Cameron & Wiedmann, Thomas & Metternicht, Graciela, 2022. "The role of electric vehicles in decarbonising Australia’s road transport sector: modelling ambitious scenarios," Energy Policy, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:enepol:v:168:y:2022:i:c:s030142152200369x
    DOI: 10.1016/j.enpol.2022.113144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152200369X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    2. Gail Helen Broadbent & Graciela Isabel Metternicht & Thomas Oliver Wiedmann, 2021. "Increasing Electric Vehicle Uptake by Updating Public Policies to Shift Attitudes and Perceptions: Case Study of New Zealand," Energies, MDPI, vol. 14(10), pages 1-20, May.
    3. Cherchi, Elisabetta, 2017. "A stated choice experiment to measure the effect of informational and normative conformity in the preference for electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 88-104.
    4. Felgenhauer, Markus F. & Pellow, Matthew A. & Benson, Sally M. & Hamacher, Thomas, 2016. "Evaluating co-benefits of battery and fuel cell vehicles in a community in California," Energy, Elsevier, vol. 114(C), pages 360-368.
    5. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    6. Broadbent, Gail Helen & Allen, Cameron Ian & Wiedmann, Thomas & Metternicht, Graciela Isabel, 2022. "Accelerating electric vehicle uptake: Modelling public policy options on prices and infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 155-174.
    7. Falko Ueckerdt & Christian Bauer & Alois Dirnaichner & Jordan Everall & Romain Sacchi & Gunnar Luderer, 2021. "Potential and risks of hydrogen-based e-fuels in climate change mitigation," Nature Climate Change, Nature, vol. 11(5), pages 384-393, May.
    8. Fritz, Markus & Plötz, Patrick & Funke, Simon A., 2019. "The impact of ambitious fuel economy standards on the market uptake of electric vehicles and specific CO2 emissions," Energy Policy, Elsevier, vol. 135(C).
    9. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    10. Cameron Allen & Graciela Metternicht & Thomas Wiedmann & Matteo Pedercini, 2019. "Greater gains for Australia by tackling all SDGs but the last steps will be the most challenging," Nature Sustainability, Nature, vol. 2(11), pages 1041-1050, November.
    11. Sen, Burak & Noori, Mehdi & Tatari, Omer, 2017. "Will Corporate Average Fuel Economy (CAFE) Standard help? Modeling CAFE's impact on market share of electric vehicles," Energy Policy, Elsevier, vol. 109(C), pages 279-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broadbent, Gail Helen & Allen, Cameron Ian & Wiedmann, Thomas & Metternicht, Graciela Isabel, 2022. "Accelerating electric vehicle uptake: Modelling public policy options on prices and infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 155-174.
    2. Cameron Allen & Annabel Biddulph & Thomas Wiedmann & Matteo Pedercini & Shirin Malekpour, 2024. "Modelling six sustainable development transformations in Australia and their accelerators, impediments, enablers, and interlinkages," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Bas, Javier & Cirillo, Cinzia & Cherchi, Elisabetta, 2021. "Classification of potential electric vehicle purchasers: A machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    4. Christian Thies & Christoph Hüls & Karsten Kieckhäfer & Jörg Wansart & Thomas S. Spengler, 2022. "Project portfolio planning under CO2 fleet emission restrictions in the automotive industry," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 937-951, June.
    5. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
    6. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    7. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Chiu-Ming Hsiao, 2022. "Economic Growth, CO 2 Emissions Quota and Optimal Allocation under Uncertainty," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    9. Ogundele Lasun Tunde & Okunlola Oluyemi Adewole & Mohannad Alobid & István Szűcs & Yacouba Kassouri, 2022. "Sources and Sectoral Trend Analysis of CO 2 Emissions Data in Nigeria Using a Modified Mann-Kendall and Change Point Detection Approaches," Energies, MDPI, vol. 15(3), pages 1-12, January.
    10. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    11. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    12. Björn Mestdagh & Olivier Sempiga & Luc Van Liedekerke, 2023. "The Impact of External Shocks on the Sustainable Development Goals (SDGs): Linking the COVID-19 Pandemic to SDG Implementation at the Local Government Level," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    13. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    14. Zhu Liu & Zhu Deng & Philippe Ciais & Jianguang Tan & Biqing Zhu & Steven J. Davis & Robbie Andrew & Olivier Boucher & Simon Ben Arous & Pep Canadel & Xinyu Dou & Pierre Friedlingstein & Pierre Gentin, 2021. "Global Daily CO$_2$ emissions for the year 2020," Papers 2103.02526, arXiv.org.
    15. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Xiao Yan & Aijun Shi & Jingyuan Cao & Tingting Li & Xuesong Sun & Rui Zhang & Xionghui Qiu & Yanxue Li & Miao Liang & Miao Lv & Chunlan Liu & Jing Wei, 2021. "The Occurrence of Heavy Air Pollution during the COVID-19 Outbreak in Beijing, China: Roles of Emission Reduction, Meteorological Conditions, and Regional Transport," Sustainability, MDPI, vol. 13(21), pages 1-12, November.
    17. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    18. Herberz, Mario & Hahnel, Ulf J.J. & Brosch, Tobias, 2020. "The importance of consumer motives for green mobility: A multi-modal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 102-118.
    19. Liu, Li-Jing & Yao, Yun-Fei & Liang, Qiao-Mei & Qian, Xiang-Yan & Xu, Chun-Lei & Wei, Si-Yi & Creutzig, Felix & Wei, Yi-Ming, 2021. "Combining economic recovery with climate change mitigation: A global evaluation of financial instruments," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 438-453.
    20. Chien-Liang Chiu & I-Fan Hsiao & Lily Chang, 2023. "Overviewing Global Surface Temperature Changes Regarding CO 2 Emission, Population Density, and Energy Consumption in the Industry: Policy Suggestions," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:168:y:2022:i:c:s030142152200369x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.