IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2997-d1672872.html
   My bibliography  Save this article

A Study on CO 2 Emission Reduction Using Operating Internal Combustion Engine Vehicles (ICEVs) and Electric Vehicles (EVs) for Rental Vehicles, Focusing on South Korea

Author

Listed:
  • Soongil Kwon

    (Forest Management Research Division, National Institute of Forest Science, Seoul 02455, Republic of Korea)

  • Yoon-Seong Chang

    (Forest Management Research Division, National Institute of Forest Science, Seoul 02455, Republic of Korea)

Abstract

Regarding the goals for achieving carbon neutrality by 2025, the transportation sector is one of the main causes of various environmental burdens, such as greenhouse gas (GHG) emissions and resource depletion, so reducing the environmental impact of the automobile industry is important. Although many countries are conducting numerous studies on the environmental impact of electric vehicles, they are limited to each country’s vehicles and models, and are limited to the production and process stages. In this study, we compared and analyzed the carbon reductions in electric and internal combustion engine vehicles during the operation stage for the most commonly used mid-sized rental vehicles in South Korea. The research results confirmed a reduction effect of approximately 1 MtCO 2 -eq per year based on approximately 570,000 vehicles, and, if applied to all passenger vehicles nationwide, an average annual reduction effect of approximately 36 MtCO 2 can be expected. This figure corresponds to a reduction of approximately 30% in domestic transportation sector carbon emissions in 2024. This study is expected to have potential as a strategic indicator to start with, tailorable to the characteristics of each country’s transportation sector’s decarbonization processes.

Suggested Citation

  • Soongil Kwon & Yoon-Seong Chang, 2025. "A Study on CO 2 Emission Reduction Using Operating Internal Combustion Engine Vehicles (ICEVs) and Electric Vehicles (EVs) for Rental Vehicles, Focusing on South Korea," Energies, MDPI, vol. 18(11), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2997-:d:1672872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shoki Kosai & Sazalina Zakaria & Hang Seng Che & Md Hasanuzzaman & Nasrudin Abd Rahim & Chiakwang Tan & Radin Diana R. Ahmad & Ahmad Rosly Abbas & Katsuyuki Nakano & Eiji Yamasue & Wei Kian Woon & Amm, 2022. "Estimation of Greenhouse Gas Emissions of Petrol, Biodiesel and Battery Electric Vehicles in Malaysia Based on Life Cycle Approach," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    2. Broadbent, Gail & Allen, Cameron & Wiedmann, Thomas & Metternicht, Graciela, 2022. "The role of electric vehicles in decarbonising Australia’s road transport sector: modelling ambitious scenarios," Energy Policy, Elsevier, vol. 168(C).
    3. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    4. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    5. Hossain, MD Shouquat & Fang, Yan Ru & Ma, Teng & Huang, Chen & Dai, Hancheng, 2023. "The role of electric vehicles in decarbonizing India's road passenger toward carbon neutrality and clean air: A state-level analysis," Energy, Elsevier, vol. 273(C).
    6. Gan, Yu & Wang, Michael & Lu, Zifeng & Kelly, Jarod, 2021. "Taking into account greenhouse gas emissions of electric vehicles for transportation de-carbonization," Energy Policy, Elsevier, vol. 155(C).
    7. Sacchi, R. & Bauer, C. & Cox, B. & Mutel, C., 2022. "When, where and how can the electrification of passenger cars reduce greenhouse gas emissions?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    2. Cotterman, Turner & Fuchs, Erica R.H. & Whitefoot, Kate S. & Combemale, Christophe, 2024. "The transition to electrified vehicles: Evaluating the labor demand of manufacturing conventional versus battery electric vehicle powertrains," Energy Policy, Elsevier, vol. 188(C).
    3. Chie Hoon Song, 2023. "Examining the Patent Landscape of E-Fuel Technology," Energies, MDPI, vol. 16(5), pages 1-19, February.
    4. Wei, Feng & Walls, W.D. & Zheng, Xiaoli, 2025. "Fuel efficiency, power trading, and emissions leakage from driving electric vehicles: Evidence from Chinese provinces," Energy Policy, Elsevier, vol. 198(C).
    5. Jacek Buko & Marek Bulsa & Adam Makowski, 2022. "Spatial Premises and Key Conditions for the Use of UAVs for Delivery of Items on the Example of the Polish Courier and Postal Services Market," Energies, MDPI, vol. 15(4), pages 1-17, February.
    6. Kumar, Vikas & Kaushik, Arun Kumar & Noravesh, Farima & Sindhwani, Rahul & Mathiyazhagan, K., 2025. "Green drives: Understanding how environmental propensity, range and technological anxiety shape electric vehicle adoption intentions," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    7. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    8. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    9. Mandys, Filip & Taneja, Shivani, 2024. "Demand for green and fossil fuel automobiles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    10. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    11. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    12. Yu Gan & Zifeng Lu & Xin He & Michael Wang & Amer Ahmad Amer, 2023. "Cradle-to-Grave Lifecycle Analysis of Greenhouse Gas Emissions of Light-Duty Passenger Vehicles in China: Towards a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
    13. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    14. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    15. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    16. Nuno Carlos Leitão & Henrique Freixa Braz & Pedro Oliveira, 2022. "Revisiting Marginal Intra-Industry Trade and Portuguese Labour Market," Evaluation Review, , vol. 46(3), pages 336-359, June.
    17. Correia Sinézio Martins, Edlaine & Lépine, Julien & Corbett, Jacqueline, 2024. "Assessing the effectiveness of financial incentives on electric vehicle adoption in Europe: Multi-period difference-in-difference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    18. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.
    19. Fatemeh Dehdar & Nuno Silva & José Alberto Fuinhas & Matheus Koengkan & Nazia Nazeer, 2022. "The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions," Energies, MDPI, vol. 15(22), pages 1-17, November.
    20. Nur Ayeesha Qisteena Muzir & Md. Hasanuzzaman & Jeyraj Selvaraj, 2023. "Modeling and Analyzing the Impact of Different Operating Conditions for Electric and Conventional Vehicles in Malaysia on Energy, Economic, and the Environment," Energies, MDPI, vol. 16(13), pages 1-31, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2997-:d:1672872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.