IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v168y2022ics0301421522003196.html
   My bibliography  Save this article

Generational effect and territorial distributive justice, the two main drivers for willingness to pay for renewable energies

Author

Listed:
  • Faulques, Martin
  • Bonnet, Jean
  • Bourdin, Sébastien
  • Juge, Marine
  • Pigeon, Jonas
  • Richard, Charlotte

Abstract

The development of Renewable Energies (RE) must be stepped up in the coming years if we are to successfully realise the ambitious energy transition challenge set by many governments across the globe. However, the energy transition is far from obvious, especially with regard to the social acceptability of RE. In this context, we used a Discrete Choice Experiment combined with a Geographical Information System to assess the willingness of individuals to switch to a more virtuous energy mix based on three energy sources (wind, photovoltaic and biogas). Our results show a dominant generational effect, indicating that young people are more likely to accept renewable energy in their neighborhoods. Furthermore, residents in areas with renewable energy with negative externalities (wind turbines and anaerobic digestion units) tend to have a lower Willingness to Pay than residents in other areas, which is what we call the principle of territorial distributive justice. There is no reason to believe that the difficulties in finding new locations for RE installations could fade away. Therefore, an increased effort of public policies to plan the location of future RE facilities in a more equitable way and always a better explanation and co-construction of new RE projects are needed.

Suggested Citation

  • Faulques, Martin & Bonnet, Jean & Bourdin, Sébastien & Juge, Marine & Pigeon, Jonas & Richard, Charlotte, 2022. "Generational effect and territorial distributive justice, the two main drivers for willingness to pay for renewable energies," Energy Policy, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003196
    DOI: 10.1016/j.enpol.2022.113094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522003196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Douenne, Thomas & Fabre, Adrien, 2020. "French attitudes on climate change, carbon taxation and other climate policies," Ecological Economics, Elsevier, vol. 169(C).
    2. Singh, Neera M., 2019. "Environmental justice, degrowth and post-capitalist futures," Ecological Economics, Elsevier, vol. 163(C), pages 138-142.
    3. Céline Bonnet, 2004. "Le modèle logit multinomial à coefficients aléatoires," Post-Print hal-02023351, HAL.
    4. Hoen, Ben & Firestone, Jeremy & Rand, Joseph & Elliot, Debi & Hübner, Gundula & Pohl, Johannes & Wiser, Ryan & Lantz, Eric & Haac, T. Ryan & Kaliski, Ken, 2019. "Attitudes of U.S. Wind Turbine Neighbors: Analysis of a Nationwide Survey," Energy Policy, Elsevier, vol. 134(C).
    5. Vecchiato, Daniel & Tempesta, Tiziano, 2015. "Public preferences for electricity contracts including renewable energy: A marketing analysis with choice experiments," Energy, Elsevier, vol. 88(C), pages 168-179.
    6. Neves, Sónia Almeida & Marques, António Cardoso & Patrício, Margarida, 2020. "Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 114-125.
    7. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    8. Andre Torre & Bertrand Zuindeau, 2009. "Proximity economics and environment: assessment and prospects," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 52(1), pages 1-24.
    9. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    10. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    11. Carfora, A. & Pansini, R.V. & Romano, A.A. & Scandurra, G., 2018. "Renewable energy development and green public policies complementarities: The case of developed and developing countries," Renewable Energy, Elsevier, vol. 115(C), pages 741-749.
    12. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    13. Demel, Simona & Longo, Alberto & Mariel, Petr, 2020. "Trading off visual disamenity for renewable energy: Willingness to pay for seaweed farming for energy production," Ecological Economics, Elsevier, vol. 173(C).
    14. Lloveras, Javier & Marshall, Adam P. & Warnaby, Gary & Kalandides, Ares, 2021. "Mobilising Sense of Place for Degrowth? Lessons From Lancashire's Anti-fracking Activism," Ecological Economics, Elsevier, vol. 183(C).
    15. Boxall, Peter C. & Adamowicz, Wiktor L. & Swait, Joffre & Williams, Michael & Louviere, Jordan, 1996. "A comparison of stated preference methods for environmental valuation," Ecological Economics, Elsevier, vol. 18(3), pages 243-253, September.
    16. Akbulut, Bengi & Demaria, Federico & Gerber, Julien-François & Martínez-Alier, Joan, 2019. "Who promotes sustainability? Five theses on the relationships between the degrowth and the environmental justice movements," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    17. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    18. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74, pages 132-132.
    19. Sébastien Bourdin & Mathilde Colas & François Raulin, 2020. "Understanding the problems of biogas production deployment in different regions: territorial governance matters too," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(9), pages 1655-1673, July.
    20. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    21. Contu, Davide & Mourato, Susana, 2020. "Complementing choice experiment with contingent valuation data: Individual preferences and views towards IV generation nuclear energy in the UK," Energy Policy, Elsevier, vol. 136(C).
    22. Bergmann, Ariel & Colombo, Sergio & Hanley, Nick, 2008. "Rural versus urban preferences for renewable energy developments," Ecological Economics, Elsevier, vol. 65(3), pages 616-625, April.
    23. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    24. Sarrias, Mauricio, 2016. "Discrete Choice Models with Random Parameters in R: The Rchoice Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i10).
    25. Frate, Cláudio Albuquerque & Brannstrom, Christian & de Morais, Marcus Vinícius Girão & Caldeira-Pires, Armando de Azevedo, 2019. "Procedural and distributive justice inform subjectivity regarding wind power: A case from Rio Grande do Norte, Brazil," Energy Policy, Elsevier, vol. 132(C), pages 185-195.
    26. Leer Jørgensen, Marie & Anker, Helle Tegner & Lassen, Jesper, 2020. "Distributive fairness and local acceptance of wind turbines: The role of compensation schemes," Energy Policy, Elsevier, vol. 138(C).
    27. Soland, Martin & Steimer, Nora & Walter, Götz, 2013. "Local acceptance of existing biogas plants in Switzerland," Energy Policy, Elsevier, vol. 61(C), pages 802-810.
    28. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    29. Oluoch, Sydney & Lal, Pankaj & Susaeta, Andres & Wolde, Bernabas, 2021. "Public preferences for renewable energy options: A choice experiment in Kenya," Energy Economics, Elsevier, vol. 98(C).
    30. Hojnik, Jana & Ruzzier, Mitja & Fabri, Stephanie & Klopčič, Alenka Lena, 2021. "What you give is what you get: Willingness to pay for green energy," Renewable Energy, Elsevier, vol. 174(C), pages 733-746.
    31. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    32. Yann Fournis & Marie-José Fortin, 2017. "From social ‘acceptance’ to social ‘acceptability’ of wind energy projects: towards a territorial perspective," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(1), pages 1-21, January.
    33. Pleeging, Emma & van Exel, Job & Burger, Martijn J. & Stavropoulos, Spyridon, 2021. "Hope for the future and willingness to pay for sustainable energy," Ecological Economics, Elsevier, vol. 181(C).
    34. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Kangyin & Yang, Senmiao & Wang, Jianda & Dong, Xiucheng, 2023. "Revisiting energy justice: Is renewable energy technology innovation a tool for realizing a just energy system?," Energy Policy, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    2. Strazzera, Elisabetta & Mura, Marina & Contu, Davide, 2012. "Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach," Energy Policy, Elsevier, vol. 48(C), pages 334-347.
    3. Vecchiato, Daniel & Tempesta, Tiziano, 2015. "Public preferences for electricity contracts including renewable energy: A marketing analysis with choice experiments," Energy, Elsevier, vol. 88(C), pages 168-179.
    4. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
    5. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    6. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2021. "The limited potential of regional electricity marketing – Results from two discrete choice experiments in Germany," Energy Economics, Elsevier, vol. 100(C).
    7. Hotaling, Chelsea & Bird, Stephen & Heintzelman, Martin D., 2021. "Willingness to pay for microgrids to enhance community resilience," Energy Policy, Elsevier, vol. 154(C).
    8. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    9. Kosenius, Anna-Kaisa & Ollikainen, Markku, 2013. "Valuation of environmental and societal trade-offs of renewable energy sources," Energy Policy, Elsevier, vol. 62(C), pages 1148-1156.
    10. Jensen, Cathrine Ulla & Panduro, Toke Emil & Lundhede, Thomas Hedemark & Nielsen, Anne Sofie Elberg & Dalsgaard, Mette & Thorsen, Bo Jellesmark, 2018. "The impact of on-shore and off-shore wind turbine farms on property prices," Energy Policy, Elsevier, vol. 116(C), pages 50-59.
    11. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    12. Canessa, Carolin & Venus, Terese & Wiesmeier, Miriam & Mennig, Philipp & Sauer, Johannes, 2023. "Farmers’ preferences over alternative AECS designs. Do the ecological conditions influence the willingness to accept result-based contracts?," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334508, Agricultural Economics Society - AES.
    13. Halkos, George & Galani, Georgia, 2016. "Assessing willingness to pay for marine and coastal ecosystems: A Case Study in Greece," MPRA Paper 68767, University Library of Munich, Germany.
    14. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    15. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
    16. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    17. Irie, Noriko & Kawahara, Naoko, 2022. "Consumer preferences for local renewable electricity production in Japan: A choice experiment," Renewable Energy, Elsevier, vol. 182(C), pages 1171-1181.
    18. Soliño, Mario & Farizo, Begoña A. & Vázquez, María X. & Prada, Albino, 2012. "Generating electricity with forest biomass: Consistency and payment timeframe effects in choice experiments," Energy Policy, Elsevier, vol. 41(C), pages 798-806.
    19. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
    20. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.