IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v157y2021ics0301421521003724.html
   My bibliography  Save this article

Study on the interactive relationship between urban residents’ expenditure and energy consumption of production sectors

Author

Listed:
  • Tu, Chuang
  • Mu, Xianzhong
  • Chen, Jian
  • Kong, Li
  • Zhang, Zheng
  • Lu, Yutong
  • Hu, Guangwen

Abstract

Urban residential expenditure describes the end demand of urban system, we construct a framework that incorporates the urban residential expenditure and sectoral energy consumption to reveal the interactive mechanism, and clarify how these indicators are influencing each other. A fuzzy cognition map that consists of 8 consumer expenditures, 19 production sectors and 1 household sector's direct energy consumption is built. Genetic algorithm is introduced to solve the weight of the fuzzy cognition map to explore the interactive relationship between urban residents' expenditure and energy consumption of production sectors. Taking the data of Beijing from 2006 to 2017 as an example, results suggest that: residents' food expenditure has a negative impact on energy consumption in various industries, especially in the agricultural sector; residential expenditure has the greatest positive impact on energy consumption in manufacturing and real estate industries; the financial sector and public manage and social organization sector, and the residents' food expenditure and traffic and telecommunications expenditure have the greatest impact on Beijing's energy consumption. It is revealed that policies regarding to controlling or changing residents' spending behavior, including food, traffic and telecommunication, will effectively contribute to reducing Beijing's sectoral energy consumption. This paper provides quantitative evidence for urban energy conservation focused policies.

Suggested Citation

  • Tu, Chuang & Mu, Xianzhong & Chen, Jian & Kong, Li & Zhang, Zheng & Lu, Yutong & Hu, Guangwen, 2021. "Study on the interactive relationship between urban residents’ expenditure and energy consumption of production sectors," Energy Policy, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:enepol:v:157:y:2021:i:c:s0301421521003724
    DOI: 10.1016/j.enpol.2021.112502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521003724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    2. Barkhordar, Zahra A., 2019. "Evaluating the economy-wide effects of energy efficient lighting in the household sector of Iran," Energy Policy, Elsevier, vol. 127(C), pages 125-133.
    3. Vringer, Kees & Blok, Kornelis, 1995. "The direct and indirect energy requirements of households in the Netherlands," Energy Policy, Elsevier, vol. 23(10), pages 893-910, October.
    4. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    5. Lenzen, Manfred, 1998. "Energy and greenhouse gas cost of living for Australia during 1993/94," Energy, Elsevier, vol. 23(6), pages 497-516.
    6. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
    7. Chen, G.Q. & Wu, X.D. & Guo, Jinlan & Meng, Jing & Li, Chaohui, 2019. "Global overview for energy use of the world economy: Household-consumption-based accounting based on the world input-output database (WIOD)," Energy Economics, Elsevier, vol. 81(C), pages 835-847.
    8. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    9. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    10. Adaman, Fikret & KaralI, Nihan & Kumbaroglu, Gürkan & Or, Ilhan & Özkaynak, Begüm & Zenginobuz, Ünal, 2011. "What determines urban households' willingness to pay for CO2 emission reductions in Turkey: A contingent valuation survey," Energy Policy, Elsevier, vol. 39(2), pages 689-698, February.
    11. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
    12. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    13. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
    14. Chen, Shaoqing & Zhu, Feiyao, 2019. "Unveiling key drivers of urban embodied and controlled carbon footprints," Applied Energy, Elsevier, vol. 235(C), pages 835-845.
    15. Christopher R. DeRolph & Ryan A. McManamay & April M. Morton & Sujithkumar Surendran Nair, 2019. "City energysheds and renewable energy in the United States," Nature Sustainability, Nature, vol. 2(5), pages 412-420, May.
    16. Marelli, Enrico, 2004. "Evolution of employment structures and regional specialisation in the EU," Economic Systems, Elsevier, vol. 28(1), pages 35-59, March.
    17. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
    18. Haikun Wang & Xi Lu & Yu Deng & Yaoguang Sun & Chris P. Nielsen & Yifan Liu & Ge Zhu & Maoliang Bu & Jun Bi & Michael B. McElroy, 2019. "China’s CO2 peak before 2030 implied from characteristics and growth of cities," Nature Sustainability, Nature, vol. 2(8), pages 748-754, August.
    19. Xiaoli Han & TK. Lakshmanan, 1994. "Structural Changes and Energy Consumption in the Japanese Economy 1975-95: An Input-Output Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 165-188.
    20. Sanchez-Choliz, Julio & Duarte, Rosa & Mainar, Alfredo, 2007. "Environmental impact of household activity in Spain," Ecological Economics, Elsevier, vol. 62(2), pages 308-318, April.
    21. Mach, Radomír & Weinzettel, Jan & Ščasný, Milan, 2018. "Environmental Impact of Consumption by Czech Households: Hybrid Input–Output Analysis Linked to Household Consumption Data," Ecological Economics, Elsevier, vol. 149(C), pages 62-73.
    22. Anker-Nilssen, Per, 2003. "Household energy use and the environment--a conflicting issue," Applied Energy, Elsevier, vol. 76(1-3), pages 189-196, September.
    23. Alipour, M. & Hafezi, R. & Amer, M. & Akhavan, A.N., 2017. "A new hybrid fuzzy cognitive map-based scenario planning approach for Iran's oil production pathways in the post–sanction period," Energy, Elsevier, vol. 135(C), pages 851-864.
    24. Long, Yin & Yoshida, Yoshikuni & Fang, Kai & Zhang, Haoran & Dhondt, Maya, 2019. "City-level household carbon footprint from purchaser point of view by a modified input-output model," Applied Energy, Elsevier, vol. 236(C), pages 379-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    2. Wei Wu & Binxia Xue & Yan Song & Xujie Gong & Tao Ma, 2023. "Investigating the Impacts of Urban Built Environment on Travel Energy Consumption: A Case Study of Ningbo, China," Land, MDPI, vol. 12(1), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    2. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    3. Lan-Cui Liu & Gang Wu & Jin-Nan Wang & Yi-Ming Wei, 2010. "China's carbon emissions from urban and rural households during 1992-2007," CEEP-BIT Working Papers 12, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    4. Lan-Cui Liu & Gang Wu & Yue-Jun Zhang, 2015. "Investigating the residential energy consumption behaviors in Beijing: a survey study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 243-263, January.
    5. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    6. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    7. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    8. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
    9. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    10. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    11. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    12. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    13. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    14. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    15. Qu, Jiansheng & Zeng, Jingjing & Li, Yan & Wang, Qin & Maraseni, Tek & Zhang, Lihua & Zhang, Zhiqiang & Clarke-Sather, Abigail, 2013. "Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China," Energy Policy, Elsevier, vol. 57(C), pages 133-140.
    16. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    17. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2011. "Direct and indirect energy consumption in China and the United States," MPRA Paper 35830, University Library of Munich, Germany.
    18. Xin Li & Xiaoqiong He & Xiyu Luo & Xiandan Cui & Minxi Wang, 2020. "Exploring the characteristics and drivers of indirect energy consumption of urban and rural households from a sectoral perspective," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 907-924, October.
    19. Jordi Roca & Monica Serrano, 2008. "Embodied pollution in Spanish household consumption: a disaggregate analysis," Working Papers in Economics 204, Universitat de Barcelona. Espai de Recerca en Economia.
    20. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:157:y:2021:i:c:s0301421521003724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.