IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp835-845.html
   My bibliography  Save this article

Unveiling key drivers of urban embodied and controlled carbon footprints

Author

Listed:
  • Chen, Shaoqing
  • Zhu, Feiyao

Abstract

Fast-growing urban demand drives increase of production at a global scale. A full understanding of how carbon footprint is driven by socioeconomic factors in local, domestic and international economies is essential. Herein, we develop a cross-boundary carbon tracking approach based on input-output analysis, network control analysis and structural decomposition analysis. Using Beijing as a case study, we quantify both urban embodied and controlled carbon footprints over 1985–2012, and look into how they are impacted by socio-economic factors in local, domestic and foreign regions. We find that the carbon controlled by urban economy from inside accounts for 60% of the total footprint over 1985–2000, while this proportion decreased to 45% in 2012 due to externalization of production supply chains. Carbon intensity and urban consumption strongly compete with each other and together determine the variation trend of the city’s consumption-based and controlled carbon footprint. Compared to a consumption-based perspective, this control approach reveals a higher impact of production structure transition on urban carbon footprint, and clearly tracks how carbon emissions are increasingly manipulated by other regions. The local-production-related carbon footprint have decreased by 15–22% over 2000–2012, while meanwhile that from domestic and foreign imports has increased dramatically by 700–960%. Network control approach is able to unveil drivers of carbon emission that are actually regulated by a city as a consequence of its interactions with the rest of global economy.

Suggested Citation

  • Chen, Shaoqing & Zhu, Feiyao, 2019. "Unveiling key drivers of urban embodied and controlled carbon footprints," Applied Energy, Elsevier, vol. 235(C), pages 835-845.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:835-845
    DOI: 10.1016/j.apenergy.2018.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317240
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    2. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    3. Chen, Shaoqing & Xu, Bing & Chen, Bin, 2018. "Unfolding the interplay between carbon flows and socioeconomic development in a city: What can network analysis offer?," Applied Energy, Elsevier, vol. 211(C), pages 403-412.
    4. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    5. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    6. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    7. Manfred Lenzen & Blanca Gallego & Richard Wood, 2009. "Matrix Balancing Under Conflicting Information," Economic Systems Research, Taylor & Francis Journals, vol. 21(1), pages 23-44.
    8. Han, M.Y. & Chen, G.Q. & Mustafa, M.T. & Hayat, T. & Shao, Ling & Li, J.S. & Xia, X.H. & Ji, Xi, 2015. "Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010," Ecological Modelling, Elsevier, vol. 318(C), pages 19-25.
    9. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    10. Kuishuang Feng & Yim Ling Siu & Dabo Guan & Klaus Hubacek, 2012. "Analyzing Drivers of Regional Carbon Dioxide Emissions for China," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 600-611, August.
    11. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    12. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    13. Sai Liang & Yu Feng & Ming Xu, 2015. "Structure of the Global Virtual Carbon Network: Revealing Important Sectors and Communities for Emission Reduction," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 307-320, April.
    14. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    15. Schulz, Niels B., 2010. "Delving into the carbon footprints of Singapore--comparing direct and indirect greenhouse gas emissions of a small and open economic system," Energy Policy, Elsevier, vol. 38(9), pages 4848-4855, September.
    16. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    17. Thomas O. Wiedmann & Guangwu Chen & John Barrett, 2016. "The Concept of City Carbon Maps: A Case Study of Melbourne, Australia," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 676-691, August.
    18. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    2. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    3. Tan, Ling Min & Arbabi, Hadi & Brockway, Paul E. & Densley Tingley, Danielle & Mayfield, Martin, 2019. "An ecological-thermodynamic approach to urban metabolism: Measuring resource utilization with open system network effectiveness analysis," Applied Energy, Elsevier, vol. 254(C).
    4. Chen, Shaoqing & Zhu, Feiyao & Long, Huihui & Yang, Jin, 2019. "Energy footprint controlled by urban demands: How much does supply chain complexity contribute?," Energy, Elsevier, vol. 183(C), pages 561-572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:835-845. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.