IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v101y2017icp42-51.html
   My bibliography  Save this article

Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom

Author

Listed:
  • Lott, Melissa C.
  • Pye, Steve
  • Dodds, Paul E.

Abstract

The energy sector is a major contributor to greenhouse gas (GHG) emissions and other types of air pollution that negatively impact human health and the environment. Policy targets to achieve decarbonisation goals for national energy systems will therefore impact levels of air pollution. Advantages can be gained from considering these co-impacts when analysing technology transition scenarios in order to avoid tension between climate change and air quality policies. We incorporated non-GHG air pollution into a bottom-up, technoeconomic energy systems model that is at the core of UK decarbonisation policy development. We then used this model to assess the co-impacts of decarbonisation on other types of air pollution and evaluated the extent to which transition pathways would be altered if these other pollutants were considered. In a scenario where the UK meets its existing decarbonisation targets to 2050, including the costs of non-GHG air pollution led to a 40% and 45% decrease in PM10 and PM2.5 pollution (respectively) between 2010 and 2050 due to changes in technology choice in residential heating. Conversely, limited change in the pollution profile for transportation were observed, suggesting that other policy strategies will be necessary to reduce pollution from transport.

Suggested Citation

  • Lott, Melissa C. & Pye, Steve & Dodds, Paul E., 2017. "Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom," Energy Policy, Elsevier, vol. 101(C), pages 42-51.
  • Handle: RePEc:eee:enepol:v:101:y:2017:i:c:p:42-51
    DOI: 10.1016/j.enpol.2016.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151630622X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollen, Johannes & van der Zwaan, Bob & Brink, Corjan & Eerens, Hans, 2009. "Local air pollution and global climate change: A combined cost-benefit analysis," Resource and Energy Economics, Elsevier, vol. 31(3), pages 161-181, August.
    2. Östblom, Göran & Samakovlis, Eva, 2004. "Costs of Climate Policy when Pollution Affects Health and Labour Productivity. A general Equilibrium Analysis Applied to Sweden," Working Papers 93, National Institute of Economic Research.
    3. Zvingilaite, Erika, 2011. "Human health-related externalities in energy system modelling the case of the Danish heat and power sector," Applied Energy, Elsevier, vol. 88(2), pages 535-544, February.
    4. Zvingilaite, Erika, 2013. "Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model," Energy Policy, Elsevier, vol. 55(C), pages 57-72.
    5. Klaassen, Ger & Riahi, Keywan, 2007. "Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO," Energy Policy, Elsevier, vol. 35(2), pages 815-827, February.
    6. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    7. Henning Jensen & Marcus Keogh-Brown & Richard Smith & Zaid Chalabi & Alan Dangour & Mike Davies & Phil Edwards & Tara Garnett & Moshe Givoni & Ulla Griffiths & Ian Hamilton & James Jarrett & Ian Rober, 2013. "The importance of health co-benefits in macroeconomic assessments of UK Greenhouse Gas emission reduction strategies," Climatic Change, Springer, vol. 121(2), pages 223-237, November.
    8. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
    9. Kudelko, Mariusz, 2006. "Internalisation of external costs in the Polish power generation sector: A partial equilibrium model," Energy Policy, Elsevier, vol. 34(18), pages 3409-3422, December.
    10. Contadini, J. Fernando & Moore, Robert M. & Sperling, Daniel & Sundaresan, Meena, 2001. "Life-Cycle Emissions of Alternative Fuels for Transportation: Dealing with Uncertainties," University of California Transportation Center, Working Papers qt0nb177k8, University of California Transportation Center.
    11. Nguyen, Khanh Q., 2008. "Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam," Energy, Elsevier, vol. 33(5), pages 740-746.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo Carnero & Pilar Calatayud, 2021. "A Parametric Analysis for Short-Term Residential Electrification with Electric Water Tanks. The Case of Spain," Sustainability, MDPI, vol. 13(21), pages 1-26, November.
    2. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    3. Baláš, Marek & Milčák, Pavel & Elbl, Patrik & Lisý, Martin & Lachman, Jakub & Kracík, Petr, 2022. "Gasification of fermentation residue in a fluidised-bed gasifier," Energy, Elsevier, vol. 245(C).
    4. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
    5. Talan, Amogh & Rao, Amar & Sharma, Gagan Deep & Apostu, Simona-Andreea & Abbas, Shujaat, 2023. "Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help?," Resources Policy, Elsevier, vol. 82(C).
    6. Jonas Forsberg & Anna Krook-Riekkola, 2021. "Recoupling Climate Change and Air Quality: Exploring Low-Emission Options in Urban Transportation Using the TIMES-City Model," Energies, MDPI, vol. 14(11), pages 1-26, May.
    7. Zambrano, Andres Felipe & Giraldo, Luis Felipe, 2020. "Solar irradiance forecasting models without on-site training measurements," Renewable Energy, Elsevier, vol. 152(C), pages 557-566.
    8. Dominković, D.F. & Dobravec, V. & Jiang, Y. & Nielsen, P.S. & Krajačić, G., 2018. "Modelling smart energy systems in tropical regions," Energy, Elsevier, vol. 155(C), pages 592-609.
    9. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    10. Di Leo, Senatro & Pietrapertosa, Filomena & Salvia, Monica & Cosmi, Carmelina, 2021. "Contribution of the Basilicata region to decarbonisation of the energy system: results of a scenario analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Dan Costin Nitescu & Valentin Murgu, 2022. "Factors Supporting the Transition to a “Green” European Economy and Funding Mechanisms," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(61), pages 630-630, August.
    12. Florinda Martins & Carlos Felgueiras & Miroslava Smitkova & Nídia Caetano, 2019. "Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries," Energies, MDPI, vol. 12(6), pages 1-11, March.
    13. Zhiming Yang & Zhen Wang & Xiao-Chen Yuan & Yu Qi & Yunquan Zhang & Weiqing Wang & Fanglin He & Jing Li, 2022. "Does income inequality aggravate the impacts of air pollution on physical health? Evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2120-2144, February.
    14. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    15. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    16. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
    17. Zhong Wang & Mingyu Wu & Shixiang Li & Changji Wang, 2021. "The Effect Evaluation of China’s Energy-Consuming Right Trading Policy: Empirical Analysis Based on PSM-DID," Sustainability, MDPI, vol. 13(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    2. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    3. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    4. Zvingilaite, Erika, 2011. "Human health-related externalities in energy system modelling the case of the Danish heat and power sector," Applied Energy, Elsevier, vol. 88(2), pages 535-544, February.
    5. Kudełko, Mariusz, 2021. "Modeling of Polish energy sector – tool specification and results," Energy, Elsevier, vol. 215(PA).
    6. Yang, Xi & Teng, Fei & Wang, Gehua, 2013. "Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China," Applied Energy, Elsevier, vol. 112(C), pages 1446-1453.
    7. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    8. Kosugi, Takanobu & Tokimatsu, Koji & Kurosawa, Atsushi & Itsubo, Norihiro & Yagita, Hiroshi & Sakagami, Masaji, 2009. "Internalization of the external costs of global environmental damage in an integrated assessment model," Energy Policy, Elsevier, vol. 37(7), pages 2664-2678, July.
    9. Fahlén, E. & Ahlgren, E.O., 2010. "Accounting for external costs in a study of a Swedish district-heating system - An assessment of environmental policies," Energy Policy, Elsevier, vol. 38(9), pages 4909-4920, September.
    10. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    11. Brown, Kristen E. & Henze, Daven K. & Milford, Jana B., 2017. "How accounting for climate and health impacts of emissions could change the US energy system," Energy Policy, Elsevier, vol. 102(C), pages 396-405.
    12. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    13. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    14. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    15. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    16. Jintao Lu & Chong Zhang & Licheng Ren & Mengshang Liang & Wadim Strielkowski & Justas Streimikis, 2020. "Evolution of External Health Costs of Electricity Generation in the Baltic States," IJERPH, MDPI, vol. 17(15), pages 1-22, July.
    17. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.
    18. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    19. Alves, Laura Araujo & Uturbey, Wadaed, 2010. "Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix," Energy Policy, Elsevier, vol. 38(10), pages 6204-6214, October.
    20. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:101:y:2017:i:c:p:42-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.