IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v75y2018icp309-322.html
   My bibliography  Save this article

The economic impact of electricity losses

Author

Listed:
  • Costa-Campi, Maria Teresa
  • Daví-Arderius, Daniel
  • Trujillo-Baute, Elisa

Abstract

Although electricity losses constitute an important, but inevitable, amount of wasted resources (and a portion that has to be funded), they remain one of the lesser known components of an electricity system, and this despite the fact that the decisions of generators, transmission and distribution system operators and consumers all impact on them. In this paper we analyse the effects of such losses from two perspectives: from that of consumption and from that of generation.

Suggested Citation

  • Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
  • Handle: RePEc:eee:eneeco:v:75:y:2018:i:c:p:309-322
    DOI: 10.1016/j.eneco.2018.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318303025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft," Energy Policy, Elsevier, vol. 39(2), pages 1007-1015, February.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Paul L. Joskow, 2012. "Creating a Smarter U.S. Electricity Grid," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 29-48, Winter.
    4. Jamasb, Tooraj & Orea, Luis & Pollitt, Michael, 2012. "Estimating the marginal cost of quality improvements: The case of the UK electricity distribution companies," Energy Economics, Elsevier, vol. 34(5), pages 1498-1506.
    5. Jamasb, Tooraj & Pollitt, Michael, 2007. "Incentive regulation of electricity distribution networks: Lessons of experience from Britain," Energy Policy, Elsevier, vol. 35(12), pages 6163-6187, December.
    6. Lueken, Colleen & Carvalho, Pedro M.S. & Apt, Jay, 2012. "Distribution grid reconfiguration reduces power losses and helps integrate renewables," Energy Policy, Elsevier, vol. 48(C), pages 260-273.
    7. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    8. Shaw, Rita & Attree, Mike & Jackson, Tim & Kay, Mike, 2009. "The value of reducing distribution losses by domestic load-shifting: a network perspective," Energy Policy, Elsevier, vol. 37(8), pages 3159-3167, August.
    9. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    10. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    11. Smith, Thomas B., 2004. "Electricity theft: a comparative analysis," Energy Policy, Elsevier, vol. 32(18), pages 2067-2076, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Adebisi Samuel, 2023. "Impact of Electricity Loss on Gross Domestic Product in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(1), pages 1556-1566, January.
    2. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    3. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Davi-Arderius, Daniel & Jamasb, Tooraj & Rosellon, Juan, 2024. "Network Operation and Constraints and the Path to Net Zero," Working Papers 8-2024, Copenhagen Business School, Department of Economics.
    5. Tomasz Wołowiec & Svitlana Kolosok & Tetiana Vasylieva & Artem Artyukhov & Łukasz Skowron & Oleksandr Dluhopolskyi & Larysa Sergiienko, 2022. "Sustainable Governance, Energy Security, and Energy Losses of Europe in Turbulent Times," Energies, MDPI, vol. 15(23), pages 1-15, November.
    6. Gautier, Axel & Nsabimana, René & Walheer, Barnabé, 2023. "Quality performance gaps and minimal electricity losses in East Africa," Utilities Policy, Elsevier, vol. 82(C).
    7. Graça Gomes, João & Jiang, Juan & Chong, Cheng Tung & Telhada, João & Zhang, Xu & Sammarchi, Sergio & Wang, Shuyang & Lin, Yu & Li, Jialong, 2023. "Hybrid solar PV-wind-battery system bidding optimisation: A case study for the Iberian and Italian liberalised electricity markets," Energy, Elsevier, vol. 263(PD).
    8. Darragh Carr & Murray Thomson, 2022. "Non-Technical Electricity Losses," Energies, MDPI, vol. 15(6), pages 1-14, March.
    9. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Carbon emissions impacts of operational network constraints: The case of Spain during the Covid-19 crisis," Energy Economics, Elsevier, vol. 128(C).
    10. Costa-Campi, Maria Teresa & Davi-Arderius, Daniel & Trujillo-Baute, Elisa, 2021. "Analysing electricity flows and congestions: Looking at locational patterns," Energy Policy, Elsevier, vol. 156(C).
    11. Graça Gomes, J. & Xu, H.J. & Yang, Q. & Zhao, C.Y., 2021. "An optimization study on a typical renewable microgrid energy system with energy storage," Energy, Elsevier, vol. 234(C).
    12. Mikhail A. Averbukh & Nikolay A. Zhukov & Stanislav V. Khvorostenko & Vasiliy I. Panteleev, 2019. "Reducing Electric Power Losses in the System of Power Supply Due to Compensation of Higher Harmonics of Currents: Economic and Energy Efficiency Outcomes," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 396-403.
    13. Costa-Campi, Maria Teresa & Davi-Arderius, Daniel & Trujillo-Baute, Elisa, 2020. "Locational impact and network costs of energy transition: Introducing geographical price signals for new renewable capacity," Energy Policy, Elsevier, vol. 142(C).
    14. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    2. Bhatt, Brijesh & Singh, Anoop, 2021. "Power sector reforms and technology adoption in the Indian electricity distribution sector," Energy, Elsevier, vol. 215(PA).
    3. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    4. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    5. Darius Corbier & Frédéric Gonand & Marie Bessec, 2015. "Impacts of decentralised power generation on distribution networks: a statistical typology of European countries," Working Papers 1509, Chaire Economie du climat.
    6. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    7. Rains, Emily & Abraham, Ronald J., 2018. "Rethinking barriers to electrification: Does government collection failure stunt public service provision?," Energy Policy, Elsevier, vol. 114(C), pages 288-300.
    8. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    9. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    10. Mah, Daphne Ngar-yin & van der Vleuten, Johannes Marinus & Hills, Peter & Tao, Julia, 2012. "Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications," Energy Policy, Elsevier, vol. 49(C), pages 204-216.
    11. Pereira, Diogo Santos & Marques, António Cardoso, 2022. "An analysis of the interactions between daily electricity demand levels in France," Utilities Policy, Elsevier, vol. 76(C).
    12. Never, Babette, 2015. "Social norms, trust and control of power theft in Uganda: Does bulk metering work for MSEs?," Energy Policy, Elsevier, vol. 82(C), pages 197-206.
    13. Jamil, Faisal, 2013. "On the electricity shortage, price and electricity theft nexus," Energy Policy, Elsevier, vol. 54(C), pages 267-272.
    14. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K., 2023. "Of cooks, crooks and slum-dwellers: Exploring the lived experience of energy and mobility poverty in Mexico's informal settlements," World Development, Elsevier, vol. 161(C).
    15. Daniel Leite & José Pessanha & Paulo Simões & Rodrigo Calili & Reinaldo Souza, 2020. "A Stochastic Frontier Model for Definition of Non-Technical Loss Targets," Energies, MDPI, vol. 13(12), pages 1-20, June.
    16. Pless, Jacquelyn & Fell, Harrison, 2017. "Bribes, bureaucracies, and blackouts: Towards understanding how corruption at the firm level impacts electricity reliability," Resource and Energy Economics, Elsevier, vol. 47(C), pages 36-55.
    17. El Hage, Fabio S. & Rufín, Carlos, 2016. "Context analysis for a new regulatory model for electric utilities in Brazil," Energy Policy, Elsevier, vol. 97(C), pages 145-154.
    18. Viegas, Joaquim L. & Esteves, Paulo R. & Melício, R. & Mendes, V.M.F. & Vieira, Susana M., 2017. "Solutions for detection of non-technical losses in the electricity grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1256-1268.
    19. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    20. Carlo Cambini & Elena Fumagalli & Laura Rondi, 2016. "Incentives to quality and investment: evidence from electricity distribution in Italy," Journal of Regulatory Economics, Springer, vol. 49(1), pages 1-32, February.

    More about this item

    Keywords

    Regulation; Networks; Energy losses; Distributed generation;
    All these keywords.

    JEL classification:

    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:75:y:2018:i:c:p:309-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.