IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8857-d982207.html
   My bibliography  Save this article

Sustainable Governance, Energy Security, and Energy Losses of Europe in Turbulent Times

Author

Listed:
  • Tomasz Wołowiec

    (Faculty of Public Administration and Business, WSEI University, 20-209 Lublin, Poland)

  • Svitlana Kolosok

    (Academic and Research Institute of Business, Economics and Management, Sumy State University, 40007 Sumy, Ukraine)

  • Tetiana Vasylieva

    (Academic and Research Institute of Business, Economics and Management, Sumy State University, 40007 Sumy, Ukraine)

  • Artem Artyukhov

    (Academic and Research Institute of Business, Economics and Management, Sumy State University, 40007 Sumy, Ukraine)

  • Łukasz Skowron

    (Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland)

  • Oleksandr Dluhopolskyi

    (Faculty of Public Administration and Business, WSEI University, 20-209 Lublin, Poland
    Faculty of Economics and Management, West Ukrainian National University, 46027 Ternopil, Ukraine)

  • Larysa Sergiienko

    (Faculty of National Security, Law and International Relations, Zhytomyr Polytechnic State University, 10005 Zhytomyr, Ukraine)

Abstract

The article aims to identify the relationship between energy efficiency and particular indicators of energy losses in Europe. The results of the bibliographic analysis showed a knowledge gap in energy losses in Europe regarding the new challenges of energy security. For the analysis, annual panel data from 32 European countries were collected from 1990 to 2019. The authors used the Jarque–Bera test to assess the normality of the residuals, utilized the Breush–Pagan test for heteroskedasticity check, and applied regression analysis to determine the relationship between energy efficiency and energy loss rates in Europe. To assess the effects of energy losses, the authors performed OLS modeling using the stats model’s package in Python. According to the modeling results, an increase in distribution losses (% of available energy from all sources) by 1% in Europe leads to an increase in energy consumption by 17.16% under other constant conditions. There is significant heterogeneity between European countries concerning energy efficiency and energy loss coefficients. Such a situation requires the development of new strategies and mechanisms to reduce energy losses, considering the challenges of energy security in Europe in turbulent times. Further research can be devoted to clustering European countries according to the main groups of energy losses: in the extraction, distribution, storage, and transformation of energy.

Suggested Citation

  • Tomasz Wołowiec & Svitlana Kolosok & Tetiana Vasylieva & Artem Artyukhov & Łukasz Skowron & Oleksandr Dluhopolskyi & Larysa Sergiienko, 2022. "Sustainable Governance, Energy Security, and Energy Losses of Europe in Turbulent Times," Energies, MDPI, vol. 15(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8857-:d:982207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manfred Fischedick, 2022. "Energieversorgungsrisiken, Energiepreiskrise und Klimaschutz erfordern gemeinsame Antworten [Energy Supply Risks, the Energy Price Crisis and Climate Protection Require Joint Responses]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(4), pages 262-269, April.
    2. Serhii Lyeonov & Tetyana Pimonenko & Olena Chygryn & Oleg Reznik & Regina Gaynulina, 2021. "Green brand as a marketing instrument: principle, features and parameters," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 43(2/3), pages 147-165.
    3. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    4. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Theft in Mexico," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 250-254.
    5. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    6. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    7. Hugo Brise o & Jessica Rubiano & Rodolfo Garc a & Omar Rojas, 2021. "Factors Associated with Electricity Losses in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 465-470.
    8. Shaw-Williams, Damian & Susilawati, Connie & Walker, Geoff & Varendorff, Jeremy, 2019. "Valuing the impact of residential photovoltaics and batteries on network electricity losses: An Australian case study," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    9. Yousef Abdel Jawad & Issam Ayyash, 2020. "Analyze the Loss of Electricity in Palestine Case Study: Ramallah and Al-Bireh Governorate," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 7-15.
    10. Olena Borysiak & Tomasz Wołowiec & Grzegorz Gliszczyński & Vasyl Brych & Oleksandr Dluhopolskyi, 2022. "Smart Transition to Climate Management of the Green Energy Transmission Chain," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    11. Oleksii Lyulyov & Ihor Vakulenko & Tetyana Pimonenko & Aleksy Kwilinski & Henryk Dzwigol & Mariola Dzwigol-Barosz, 2021. "Comprehensive Assessment of Smart Grids: Is There a Universal Approach?," Energies, MDPI, vol. 14(12), pages 1-26, June.
    12. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    13. Rachid Boutti & El Amri Adil & Florence Rodhain, 2019. "Multivariate Analysis of a Time Series EU ETS: Methods and Applications in Carbon Finance," Post-Print hal-03676358, HAL.
    14. Acar, Pinar & Berk, Istemi, 2022. "Power infrastructure quality and industrial performance: A panel data analysis on OECD manufacturing sectors," Energy, Elsevier, vol. 239(PC).
    15. de Oliveira Ventura, Lucas & Melo, Joel D. & Padilha-Feltrin, Antonio & Fernández-Gutiérrez, Juan Pablo & Sánchez Zuleta, Carmen C. & Piedrahita Escobar, Carlos César, 2020. "A new way for comparing solutions to non-technical electricity losses in South America," Utilities Policy, Elsevier, vol. 67(C).
    16. Aleksandra Kuzior & Aleksy Kwilinski & Ihor Hroznyi, 2021. "The Factorial-Reflexive Approach to Diagnosing the Executors’ and Contractors’ Attitude to Achieving the Objectives by Energy Supplying Companies," Energies, MDPI, vol. 14(9), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Sutkowska & Leslaw Teper & Tomasz Czech & Arthur Walker, 2023. "Assessment of the Condition of Soils before Planned Hard Coal Mining in Southern Poland: A Starting Point for Sustainable Management of Fossil Fuel Resources," Energies, MDPI, vol. 16(2), pages 1-14, January.
    2. Fabio Gualandri & Aleksandra Kuzior, 2023. "Home Energy Management Systems Adoption Scenarios: The Case of Italy," Energies, MDPI, vol. 16(13), pages 1-20, June.
    3. Łukasz Skowron & Olena Chygryn & Marcin Gąsior & Vitaliia Koibichuk & Serhiy Lyeonov & Serhii Drozd & Oleksandr Dluhopolskyi, 2023. "Interconnection between the Dynamic of Growing Renewable Energy Production and the Level of CO 2 Emissions: A Multistage Approach for Modeling," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    4. Yevheniia Ziabina & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko & Yana Us, 2023. "Convergence of Energy Policies between the EU and Ukraine under the Green Deal Policy," Energies, MDPI, vol. 16(2), pages 1-19, January.
    5. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Inclusive Economic Growth: Relationship between Energy and Governance Efficiency," Energies, MDPI, vol. 16(6), pages 1-16, March.
    6. Aleksandra Kuzior & Yaryna Samusevych & Serhiy Lyeonov & Dariusz Krawczyk & Dymytrii Grytsyshen, 2023. "Applying Energy Taxes to Promote a Clean, Sustainable and Secure Energy System: Finding the Preferable Approaches," Energies, MDPI, vol. 16(10), pages 1-26, May.
    7. Vasileios Alevizos & Ilias Georgousis & Anna-Maria Kapodistria, 2023. "Towards Climate Neutrality: A Comprehensive Overview of Sustainable Operations Management, Optimization, and Wastewater Treatment Strategies," Papers 2308.00808, arXiv.org.
    8. Sławomir Kędzior & Lesław Teper, 2023. "Coal Properties and Coalbed Methane Potential in the Southern Part of the Upper Silesian Coal Basin, Poland," Energies, MDPI, vol. 16(7), pages 1-25, April.
    9. Aleksandra Kuzior & Mariya Sira & Paulina Brożek, 2023. "Use of Artificial Intelligence in Terms of Open Innovation Process and Management," Sustainability, MDPI, vol. 15(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darragh Carr & Murray Thomson, 2022. "Non-Technical Electricity Losses," Energies, MDPI, vol. 15(6), pages 1-14, March.
    2. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Yaryna Samusevych & Serhiy Lyeonov & Artem Artyukhov & Volodymyr Martyniuk & Iryna Tenytska & Joanna Wyrwisz & Krystyna Wojciechowska, 2023. "Optimal Design of Transport Tax on the Way to National Security: Balancing Environmental Footprint, Energy Efficiency and Economic Growth," Sustainability, MDPI, vol. 15(1), pages 1-14, January.
    4. Nadiia Artyukhova & Inna Tiutiunyk & Sylwester Bogacki & Tomasz Wołowiec & Oleksandr Dluhopolskyi & Yevhen Kovalenko, 2022. "Scenario Modeling of Energy Policies for Sustainable Development," Energies, MDPI, vol. 15(20), pages 1-24, October.
    5. Łukasz Skowron & Olena Chygryn & Marcin Gąsior & Vitaliia Koibichuk & Serhiy Lyeonov & Serhii Drozd & Oleksandr Dluhopolskyi, 2023. "Interconnection between the Dynamic of Growing Renewable Energy Production and the Level of CO 2 Emissions: A Multistage Approach for Modeling," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    6. Gautier, Axel & Nsabimana, René & Walheer, Barnabé, 2023. "Quality performance gaps and minimal electricity losses in East Africa," Utilities Policy, Elsevier, vol. 82(C).
    7. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    8. Tomasz Wołowiec & Iuliia Myroshnychenko & Ihor Vakulenko & Sylwester Bogacki & Anna Maria Wiśniewska & Svitlana Kolosok & Vitaliy Yunger, 2022. "International Impact of COVID-19 on Energy Economics and Environmental Pollution: A Scoping Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    9. Aleksandra Kuzior & Mariya Sira & Paulina Brozek, 2022. "Using Blockchain and Artificial Intelligence in Energy Management as a Tool to Achieve Energy Efficiency," Virtual Economics, The London Academy of Science and Business, vol. 5(3), pages 69-90, November.
    10. Hugo Brise o & Jessica Rubiano & Rodolfo Garc a & Omar Rojas, 2021. "Factors Associated with Electricity Losses in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 465-470.
    11. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    12. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    13. R. Ebrahimi & S. Choobchian & H. Farhadian & I. Goli & E. Farmandeh & H. Azadi, 2022. "Investigating the effect of vocational education and training on rural women’s empowerment," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    14. Bárbara Galleli & Elder Semprebon & Joyce Aparecida Ramos dos Santos & Noah Emanuel Brito Teles & Mateus Santos de Freitas-Martins & Raquel Teodoro da Silva Onevetch, 2021. "Institutional Pressures, Sustainable Development Goals and COVID-19: How Are Organisations Engaging?," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    15. Sagarika Dey & Priyanka Devi, 2019. "Impact of TVET on Labour Market Outcomes and Women’s Empowerment in Rural Areas: A Case Study from Cachar District, Assam," Indian Journal of Human Development, , vol. 13(3), pages 357-371, December.
    16. Maria Sassi, 2020. "A SEM Approach to the Direct and Indirect Links between WaSH Services and Access to Food in Countries in Protracted Crises: The Case of Western Bahr-el-Ghazal State, South Sudan," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
    17. Olga Stepanova & Magdalena Romanov, 2021. "Urban Planning as a Strategy to Implement Social Sustainability Policy Goals? The Case of Temporary Housing for Immigrants in Gothenburg, Sweden," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    18. Michel, Hanno, 2020. "From local to global: The role of knowledge, transfer, and capacity building for successful energy transitions," Discussion Papers, Research Group Digital Mobility and Social Differentiation SP III 2020-603, WZB Berlin Social Science Center.
    19. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    20. Wilson Charles Wilson & Maja Slingerland & Frederick P. Baijukya & Hannah Zanten & Simon Oosting & Ken E. Giller, 2021. "Integrating the soybean-maize-chicken value chains to attain nutritious diets in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1595-1612, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8857-:d:982207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.