IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3219-d1115008.html
   My bibliography  Save this article

Coal Properties and Coalbed Methane Potential in the Southern Part of the Upper Silesian Coal Basin, Poland

Author

Listed:
  • Sławomir Kędzior

    (Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland)

  • Lesław Teper

    (Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland)

Abstract

The area studied covers unmined Pennsylvanian Ćwiklice and Dankowice coal deposits located in the southern part of the Upper Silesian Coal Basin, Poland. The geological structure of the area clearly affects the current distribution of methane. The content of methane is lower in coal seams lying within porous and permeable sandstones (Łaziska sandstones), whereas it is higher in seams that occur in sequences (Mudstone Series) where impermeable shales and mudstones occur. Due to the previous attempts to extract methane from boreholes, this area, characterized by a dense network of exploratory and prospecting drillings, is worth analyzing with regard to the conditions of methane occurrence in terms of extraction possibilities. Using contour maps, cross-sections and profiles, the variability of methane content and resources, as well as the moisture and ash content of coal seams, were analyzed. Methane content isolines are parallel to the boundary between the Cracow Sandstone Series and the Mudstone Series and to main faults. Coal moisture contents clearly reduce methane contents. A high methane content >8 m 3 /t coal daf is typical for coal seams in which moisture contents do not exceed 5%. High- and medium-volatile bituminous coal in the area is characterized by low methane saturation, though saturation increases with depth. Coal permeability is variable (from 0.2 to more than 100 mD), but, below a depth of 1200 m, a clear trend of decreasing permeability with depth is evident. From the point of view of coalbed methane (CBM) recovery, relatively low coal permeabilities and methane saturation levels could make CBM output problematic in the studied area. Methane production will be more probable as a result of demethanation of the Dankowice 1 deposit, where coal mining is planned. This will result in the emission of methane into the atmosphere from ventilation shafts and methane drainage stations. Therefore, effective use of the gas captured by the methane drainage station is highly desirable for environmental and economic reasons.

Suggested Citation

  • Sławomir Kędzior & Lesław Teper, 2023. "Coal Properties and Coalbed Methane Potential in the Southern Part of the Upper Silesian Coal Basin, Poland," Energies, MDPI, vol. 16(7), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3219-:d:1115008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Wołowiec & Svitlana Kolosok & Tetiana Vasylieva & Artem Artyukhov & Łukasz Skowron & Oleksandr Dluhopolskyi & Larysa Sergiienko, 2022. "Sustainable Governance, Energy Security, and Energy Losses of Europe in Turbulent Times," Energies, MDPI, vol. 15(23), pages 1-15, November.
    2. Katarzyna Sutkowska & Leslaw Teper & Tomasz Czech & Arthur Walker, 2023. "Assessment of the Condition of Soils before Planned Hard Coal Mining in Southern Poland: A Starting Point for Sustainable Management of Fossil Fuel Resources," Energies, MDPI, vol. 16(2), pages 1-14, January.
    3. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewa Krzeszowska, 2024. "Chemostratigraphic Approach to the Study of Resources’ Deposit in the Upper Silesian Coal Basin (Poland)," Energies, MDPI, vol. 17(3), pages 1-21, January.
    2. Sławomir Kędzior & Lesław Teper, 2024. "Occurrence and Potential for Coalbed Methane Extraction in the Depocenter Area of the Upper Silesian Coal Basin (Poland) in the Context of Selected Geological Factors," Energies, MDPI, vol. 17(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Inclusive Economic Growth: Relationship between Energy and Governance Efficiency," Energies, MDPI, vol. 16(6), pages 1-16, March.
    2. Geng, Jiabo & Zeng, Gaoxiong & Liu, Cunyang & Li, Xiaoshuang & Zhang, Dongming, 2023. "Development and application of triaxial seepage test system for gas-water two-phase in coal rock," Energy, Elsevier, vol. 277(C).
    3. Xing, Zhihao & Yao, Jun & Liu, Lei & Sun, Hai, 2024. "Efficiently reconstructing high-quality details of 3D digital rocks with super-resolution Transformer," Energy, Elsevier, vol. 300(C).
    4. Dai, Shijie & Xu, Jiang & Jia, Li & Chen, Jieren & Yan, Fazhi & Chen, Yuexia & Peng, Shoujian, 2023. "On the 3D fluid behavior during CBM coproduction in a multi pressure system: Insights from experimental analysis and mathematical models," Energy, Elsevier, vol. 283(C).
    5. Yevheniia Ziabina & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko & Yana Us, 2023. "Convergence of Energy Policies between the EU and Ukraine under the Green Deal Policy," Energies, MDPI, vol. 16(2), pages 1-19, January.
    6. Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
    7. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    8. Vasileios Alevizos & Ilias Georgousis & Anna-Maria Kapodistria, 2023. "Towards Climate Neutrality: A Comprehensive Overview of Sustainable Operations Management, Optimization, and Wastewater Treatment Strategies," Papers 2308.00808, arXiv.org.
    9. Ji, Bingnan & Pan, Hongyu & Pang, Mingkun & Pan, Mingyue & Zhang, Hang & Zhang, Tianjun, 2023. "Molecular simulation of CH4 adsorption characteristics in bituminous coal after different functional group fractures," Energy, Elsevier, vol. 282(C).
    10. Fabio Gualandri & Aleksandra Kuzior, 2023. "Home Energy Management Systems Adoption Scenarios: The Case of Italy," Energies, MDPI, vol. 16(13), pages 1-20, June.
    11. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Chemical dissolution of minerals in anthracite after supercritical carbon dioxide immersion: Considering mechanical damage and enhanced porosity," Energy, Elsevier, vol. 283(C).
    12. Aleksandra Kuzior & Yaryna Samusevych & Serhiy Lyeonov & Dariusz Krawczyk & Dymytrii Grytsyshen, 2023. "Applying Energy Taxes to Promote a Clean, Sustainable and Secure Energy System: Finding the Preferable Approaches," Energies, MDPI, vol. 16(10), pages 1-26, May.
    13. Liu, Shumin & Sun, Haitao & Zhang, Dongming & Yang, Kun & Li, Xuelong & Wang, Dengke & Li, Yaning, 2023. "Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics," Energy, Elsevier, vol. 275(C).
    14. Katarzyna Sutkowska & Leslaw Teper & Tomasz Czech & Arthur Walker, 2023. "Assessment of the Condition of Soils before Planned Hard Coal Mining in Southern Poland: A Starting Point for Sustainable Management of Fossil Fuel Resources," Energies, MDPI, vol. 16(2), pages 1-14, January.
    15. Siavashi, Javad & Mahdaviara, Mehdi & Shojaei, Mohammad Javad & Sharifi, Mohammad & Blunt, Martin J., 2024. "Segmentation of two-phase flow X-ray tomography images to determine contact angle using deep autoencoders," Energy, Elsevier, vol. 288(C).
    16. Li, Zhenbao & Wang, Shaorui & Wei, Gaoming & Wang, Hu & Zhao, Haizhang & Liang, Rui, 2024. "The seepage driving mechanism and effect of CO2 displacing CH4 in coal seam under different pressures," Energy, Elsevier, vol. 293(C).
    17. Wang, Kai & Gong, Haoran & Wang, Gongda & Yang, Xin & Xue, Haiteng & Du, Feng & Wang, Zhie, 2024. "N2 injection to enhance gas drainage in low-permeability coal seam: A field test and the application of deep learning algorithms," Energy, Elsevier, vol. 290(C).
    18. Chaolin Zhang & Wei Zeng & Jiang Xu & Shoujian Peng & Shan Yin & Qiaozhen Jiang & Mingliang Liu, 2023. "Acoustic-Gas Coupling Response Law in the Whole Process of Coal and Gas Outburst," Sustainability, MDPI, vol. 15(17), pages 1-13, August.
    19. Shang, Zheng & Wang, Haifeng & Wang, Zhirong & Li, Bing & Dong, Jun & Guo, Pinkun, 2024. "Investigation of the smashing characteristics induced by energy distribution of CO2 BLEVE for coalbed methane recovery," Energy, Elsevier, vol. 288(C).
    20. Bai, Gang & Su, Jun & Fu, Shigen & Li, Xueming & Zhou, Xihua & Wang, Jue & Liu, Zhengdong & Zhang, Xun, 2024. "Effect of CO2 injection on the gas desorption and diffusion kinetics: An experimental study," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3219-:d:1115008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.