IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024829.html
   My bibliography  Save this article

On the 3D fluid behavior during CBM coproduction in a multi pressure system: Insights from experimental analysis and mathematical models

Author

Listed:
  • Dai, Shijie
  • Xu, Jiang
  • Jia, Li
  • Chen, Jieren
  • Yan, Fazhi
  • Chen, Yuexia
  • Peng, Shoujian

Abstract

To investigate the dynamic response characteristics of coalbed methane (CBM) reservoirs with multi pressure system induced by coproduction, physical simulation experiments were conducted on CBM coproduction under both conventional and constant-rate coproduction modes using a self-built experimental platform. The results showed that constant-rate coproduction can significantly extend the stable coproduction period of CBM compared to conventional coproduction, but it may have an inhibitory effect on certain reservoirs, which is negatively correlated with the initial reservoir pressure. Constant-rate coproduction can cause disturbance effects on reservoir pressure, leading to an increase in the expansion resistance of the pressure-reduction funnel during coproduction, and even the appearance of the pressure-buildup funnel of low-pressure reservoirs. A calculation principle for the 3D fluid flow parameters was developed by considering the dynamic permeability and the pressure gradient of the reservoir. The 3D fluid flow parameters were employed to quantitatively characterize the spatial and temporal evolution of fluid relative flow velocity and deflection angle in the reservoir during coproduction. Near the far end of the wellbore, the fluid flowed nearly horizontally, while near the wellbore, the fluid flowed towards or away from the wellbore center due to different levels of disturbance.

Suggested Citation

  • Dai, Shijie & Xu, Jiang & Jia, Li & Chen, Jieren & Yan, Fazhi & Chen, Yuexia & Peng, Shoujian, 2023. "On the 3D fluid behavior during CBM coproduction in a multi pressure system: Insights from experimental analysis and mathematical models," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024829
    DOI: 10.1016/j.energy.2023.129088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.