IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223025902.html
   My bibliography  Save this article

Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process

Author

Listed:
  • Liu, Zhengdong
  • Lin, Xiaosong
  • Zhu, Wancheng
  • Hu, Ze
  • Hao, Congmeng
  • Su, Weiwei
  • Bai, Gang

Abstract

During the permeability evolution process, coal permeability rebound and recovery is an important behaviour. Currently, studies on it mainly focus on the effects of reservoir pressure changes, but the influence of temperature is also significant. In the study, a binary gas permeability evolution model was constructed, which considers the competition mechanism between effective stress, gas adsorption/desorption, and thermal expansion. The model was employed to study the dynamic evolution of various parameters during CO2 injection into CH4-containing coal at different temperatures. The findings demonstrate a complex permeability evolution over time, characterized by a rapid decrease followed by a significant increase and then another gradual decrease. And the time required for permeability rebound and recovery increases as the temperature increases. Moreover, by monitoring the law of gas migration at fixed points and other methods to obtain the changing trend of CO2 flow rate and CO2 cumulative storage volume on a time scale. The results showed that both CO2 flow rate and CO2 cumulative storage volume decreased with increased permeability rebound and recovery time. Inspired by the abovementioned laws, this study proposed using the stage-pressure injection method in high-temperature coal. Results indicate that the stage-pressure method can increase the CO2 injection effect.

Suggested Citation

  • Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223025902
    DOI: 10.1016/j.energy.2023.129196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    2. Liu, Xudong & Sang, Shuxun & Zhou, Xiaozhi & Wang, Ziliang, 2023. "Coupled adsorption-hydro-thermo-mechanical-chemical modeling for CO2 sequestration and well production during CO2-ECBM," Energy, Elsevier, vol. 262(PA).
    3. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    4. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    5. Shimin Liu & Yi Wang & Satya Harpalani, 2016. "Anisotropy characteristics of coal shrinkage/swelling and its impact on coal permeability evolution with CO 2 injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 615-632, October.
    6. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    7. Gunter, W. D. & Wong, S. & Cheel, D. B. & Sjostrom, G., 1998. "Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective," Applied Energy, Elsevier, vol. 61(4), pages 209-227, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    2. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    3. Geng, Weile & Huang, Gun & Guo, Shengli & Jiang, Changbao & Dong, Ziwen & Wang, Wensong, 2022. "Influence of long-term CH4 and CO2 treatment on the pore structure and mechanical strength characteristics of Baijiao coal," Energy, Elsevier, vol. 242(C).
    4. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).
    5. Wang, Zhenzhi & Fu, Xuehai & Pan, Jienan & Deng, Ze, 2023. "Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal," Energy, Elsevier, vol. 275(C).
    6. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    7. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    8. Ningning Zhao & Tianfu Xu & Kairan Wang & Hailong Tian & Fugang Wang, 2018. "Experimental study of physical‐chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 510-528, June.
    9. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    10. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    11. Hermann Held, 2019. "Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 247-261, January.
    12. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    13. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    14. Hoel, Michael, 2016. "Optimal control theory with applications to resource and environmental economics," Memorandum 08/2016, Oslo University, Department of Economics.
    15. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    16. Liu, Ang & Liu, Shimin, 2022. "Mechanical property alterations across coal matrix due to water-CO2 treatments: A micro-to-nano scale experimental study," Energy, Elsevier, vol. 248(C).
    17. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    18. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    19. Richard Millar & Alexander Otto & Piers Forster & Jason Lowe & William Ingram & Myles Allen, 2015. "Model structure in observational constraints on transient climate response," Climatic Change, Springer, vol. 131(2), pages 199-211, July.
    20. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223025902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.