IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v72y2019i1d10.1007_s10640-018-0288-y.html
   My bibliography  Save this article

Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets

Author

Listed:
  • Hermann Held

    (University of Hamburg)

Abstract

Cost risk analysis (CRA) is currently emerging as a noticed decision-analytic framework within the field of climate economics. It combines the expected utility-based structure of cost–benefit analysis with the target-based approach of cost effectiveness analysis (CEA). As such, it offers a promising candidate for those decision-makers who would like to express their precautionary attitude in view of deeply uncertain global warming impacts through a temperature target, yet who would like to avoid the dynamic inconsistencies of CEA. We review both its rationale and key results derived from it. (1) Without a delay in mitigation policy as against the CRA-optimal solution, CRA produces solutions resembling those obtained by means of cost effectiveness analysis, thereby retroactively justifying the approach underlying the nearly 1000 scenarios gathered in IPCC AR5. (2) With an increasing delay, however, CRA would result in decreasing mitigation costs, contrary to CEA. (3) CRA has demonstrated that it is possible to determine the economic value of climate information, unlike CEA. Here, for the first time, a complete list of the assumptions on which CRA is based is presented, including a missing proof. In closing, we explain finding (1) and thereby also show that, without a delay, CRA-based solutions are universal in that they essentially do not depend on the choice of a ‘risk function.’

Suggested Citation

  • Hermann Held, 2019. "Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 247-261, January.
  • Handle: RePEc:kap:enreec:v:72:y:2019:i:1:d:10.1007_s10640-018-0288-y
    DOI: 10.1007/s10640-018-0288-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-018-0288-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-018-0288-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Schmidt & Alexander Lorenz & Hermann Held & Elmar Kriegler, 2011. "Climate targets under uncertainty: challenges and remedies," Climatic Change, Springer, vol. 104(3), pages 783-791, February.
    2. Martin L. Weitzman, 2011. "Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain Discounting," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 23-46, National Bureau of Economic Research, Inc.
    3. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    4. Anthony Patt, 1999. "Separating Analysis From Politics:," Review of Policy Research, Policy Studies Organization, vol. 16(3‐4), pages 104-137, September.
    5. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    6. Held, Hermann & Kriegler, Elmar & Lessmann, Kai & Edenhofer, Ottmar, 2009. "Efficient climate policies under technology and climate uncertainty," Energy Economics, Elsevier, vol. 31(Supplemen), pages 50-61.
    7. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    8. Marlos Goes & Nancy Tuana & Klaus Keller, 2011. "The economics (or lack thereof) of aerosol geoengineering," Climatic Change, Springer, vol. 109(3), pages 719-744, December.
    9. Roger A. Blau, 1974. "Stochastic Programming and Decision Analysis: An Apparent Dilemma," Management Science, INFORMS, vol. 21(3), pages 271-276, November.
    10. Alexander Lorenz & Elmar Kriegler & Hermann Held & Matthias G. W. Schmidt, 2012. "How To Measure The Importance Of Climate Risk For Determining Optimal Global Abatement Policies?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-28.
    11. Christian Gollier, 2004. "The Economics of Risk and Time," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262572249, December.
    12. R. Jagannathan, 1985. "Use of Sample Information in Stochastic Recourse and Chance-Constrained Programming Models," Management Science, INFORMS, vol. 31(1), pages 96-108, January.
    13. Antony Millner & Simon Dietz & Geoffrey Heal, 2013. "Scientific Ambiguity and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 21-46, May.
    14. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elettra Agliardi & Anastasios Xepapadeas, 2019. "Introduction: Special Issue on the Economics of Climate Change and Sustainability," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 1-4, January.
    2. Schreyer, Felix & Held, Hermann, 2020. "How to formulate climate targets under uncertainty and anticipated future learning about climate sensitivity? – An axiomatic review of the strong sustainability paradigm," WiSo-HH Working Paper Series 54, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    3. Mohammad M. Khabbazan, 2022. "Cost-Risk Analysis Reconsidered—Value of Information on the Climate Sensitivity in the Integrated Assessment Model PRICE," Energies, MDPI, vol. 15(11), pages 1-17, June.
    4. Held, Hermann, 2020. "Cost Risk Analysisː How Robust Is It in View of Weitzman's Dismal Theorem and Undetermined Risk Functions?," WiSo-HH Working Paper Series 55, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    5. Karaarslan, Can, 2022. "Social policy, psychology and climate mitigation," Working Papers for Marketing & Management 64, Offenburg University, Department of Media and Information.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Held, Hermann, 2020. "Cost Risk Analysisː How Robust Is It in View of Weitzman's Dismal Theorem and Undetermined Risk Functions?," WiSo-HH Working Paper Series 55, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    2. Delf Neubersch & Hermann Held & Alexander Otto, 2014. "Operationalizing climate targets under learning: An application of cost-risk analysis," Climatic Change, Springer, vol. 126(3), pages 305-318, October.
    3. Mohammad M. Khabbazan, 2022. "Cost-Risk Analysis Reconsidered—Value of Information on the Climate Sensitivity in the Integrated Assessment Model PRICE," Energies, MDPI, vol. 15(11), pages 1-17, June.
    4. Elnaz Roshan & Mohammad M. Khabbazan & Hermann Held, 2019. "Cost-Risk Trade-Off of Mitigation and Solar Geoengineering: Considering Regional Disparities Under Probabilistic Climate Sensitivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 263-279, January.
    5. Schreyer, Felix & Held, Hermann, 2020. "How to formulate climate targets under uncertainty and anticipated future learning about climate sensitivity? – An axiomatic review of the strong sustainability paradigm," WiSo-HH Working Paper Series 54, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    6. Rickels, Wilfried & Merk, Christine & Honneth, Johannes & Schwinger, Jörg & Quaas, Martin & Oschlies, Andreas, 2019. "Welche Rolle spielen negative Emissionen für die zukünftige Klimapolitik?," Open Access Publications from Kiel Institute for the World Economy 261840, Kiel Institute for the World Economy (IfW Kiel).
    7. Stein, Lukas & Khabbazan, Mohammad Mohammadi & Held, Hermann, 2020. "Replacing temperature targets by subsidiary targetsː How accurate are they? – Overshooting vs. economic losses," WiSo-HH Working Paper Series 57, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    8. Roth, Robert & Neubersch, Delf & Held, Hermann, 2020. "Evaluating Delayed Climate Policy by Cost-Risk Analysis," WiSo-HH Working Paper Series 53, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    9. Matthias Schmidt & Alexander Lorenz & Hermann Held & Elmar Kriegler, 2011. "Climate targets under uncertainty: challenges and remedies," Climatic Change, Springer, vol. 104(3), pages 783-791, February.
    10. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    11. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
    12. Armon Rezai & Frederick Van Der Ploeg, 2017. "Abandoning Fossil Fuel: How Fast and How Much," Manchester School, University of Manchester, vol. 85(S2), pages 16-44, December.
    13. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    14. Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2015. "The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 55-80, January.
    15. Elettra Agliardi & Thomas Alexopoulos & Christian Cech, 2019. "On the Relationship Between GHGs and Global Temperature Anomalies: Multi-level Rolling Analysis and Copula Calibration," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 109-133, January.
    16. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
    17. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    18. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    19. Yu-Fu Chen & Michael Funke & Nicole Glanemann, 2011. "Time is Running Out: The 2°C Target and Optimal Climate Policies," Dundee Discussion Papers in Economics 262, Economic Studies, University of Dundee.
    20. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:72:y:2019:i:1:d:10.1007_s10640-018-0288-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.