IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v69y2018icp261-269.html
   My bibliography  Save this article

Understanding oil scarcity through drilling activity

Author

Listed:
  • Bai, Yiyi
  • Okullo, Samuel J.

Abstract

There are two dimensions of scarcity for exhaustible resources: physical and economic. While there is a general consensus that oil has grown physically scarce overtime, it is less clear whether the same can be said of economic scarcity. We develop a procedure based on evaluating movements in both drilling trends and rents in order to draw more precise inference about economic availability of oil reserves. We apply this method to data on the US oil industry and demonstrate that US crude oil reserves grew economically more abundant between 1955 and 2002, despite increasing physical scarcity.

Suggested Citation

  • Bai, Yiyi & Okullo, Samuel J., 2018. "Understanding oil scarcity through drilling activity," Energy Economics, Elsevier, vol. 69(C), pages 261-269.
  • Handle: RePEc:eee:eneeco:v:69:y:2018:i:c:p:261-269
    DOI: 10.1016/j.eneco.2017.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317304218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Margaret E. Slade & Henry Thille, 2009. "Whither Hotelling: Tests of the Theory of Exhaustible Resources," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 239-259, September.
    2. Lee, Junsoo & List, John A. & Strazicich, Mark C., 2006. "Non-renewable resource prices: Deterministic or stochastic trends?," Journal of Environmental Economics and Management, Elsevier, vol. 51(3), pages 354-370, May.
    3. Slade, Margaret E., 1982. "Trends in natural-resource commodity prices: An analysis of the time domain," Journal of Environmental Economics and Management, Elsevier, vol. 9(2), pages 122-137, June.
    4. Reyer Gerlagh, 2011. "Too Much Oil," CESifo Economic Studies, CESifo Group, vol. 57(1), pages 79-102, March.
    5. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    6. John Livernois, 2009. "On the Empirical Significance of the Hotelling Rule," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 3(1), pages 22-41, Winter.
    7. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    8. Cynthia Lin, C.-Y. & Wagner, Gernot, 2007. "Steady-state growth in a Hotelling model of resource extraction," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 68-83, July.
    9. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    10. Calvin Atewamba & Bruno Nkuiya, 2017. "Testing the Assumptions and Predictions of the Hotelling Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(1), pages 169-203, January.
    11. Liu, Li & Wang, Yudong & Wu, Chongfeng & Wu, Wenfeng, 2016. "Disentangling the determinants of real oil prices," Energy Economics, Elsevier, vol. 56(C), pages 363-373.
    12. Lewis Cecil Gray, 1914. "Rent under the Assumption of Exhaustibility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 28(3), pages 466-489.
    13. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    14. LaFrance, Jeffrey T. & Barney, L. Dwayne, 1991. "The envelope theorem in dynamic optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 15(2), pages 355-385, April.
    15. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    16. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2021. "(Bio-)Fuel mandating and the green paradox," Energy Economics, Elsevier, vol. 95(C).
    2. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    3. van den Bijgaart, Inge & Rodriguez, Mauricio, 2020. "Closing wells; fossil exploration and abandonment in the energy transition," Working Papers in Economics 789, University of Gothenburg, Department of Economics.
    4. van den Bijgaart, Inge & Rodriguez, Mauricio, 2023. "Closing wells: Fossil development and abandonment in the energy transition," Resource and Energy Economics, Elsevier, vol. 74(C).
    5. Chuku, Chuku & Lang, Lin & Lim, King Yoong, 2023. "Public debt, Chinese loans and optimal exploration–extraction in Africa," Energy Economics, Elsevier, vol. 118(C).
    6. Deku, Solomon Y. & Lim, King Yoong, 2024. "Oil price effects on optimal extraction–exploration and offshore entities: An applied-theoretical and empirical investigation in oil-rich economies," Energy Economics, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Ferreira da Cunha & Antoine Missemer, 2020. "The Hotelling rule in non‐renewable resource economics: A reassessment," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 800-820, May.
    2. Stuermer, Martin & Schwerhoff, Gregor, 2013. "Technological change in resource extraction and endogenous growth," Bonn Econ Discussion Papers 12/2013, University of Bonn, Bonn Graduate School of Economics (BGSE).
    3. Gregor Schwerhoff & Martin Stuermer, 2015. "Non-renewable resources, extraction technology, and endogenous growth," Working Papers 1506, Federal Reserve Bank of Dallas.
    4. Xiaoyi Mu and Haichun Ye, 2015. "Small Trends and Big Cycles in Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    5. Martin Stürmer & Gregor Schwerhoff, 2012. "Non-Renewable but Inexhaustible – Resources in an Endogenous Growth Model," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2012_09, Max Planck Institute for Research on Collective Goods.
    6. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    7. Wang, Qiao & Balvers, Ronald, 2021. "Determinants and predictability of commodity producer returns," Journal of Banking & Finance, Elsevier, vol. 133(C).
    8. Johnson Kakeu, 2023. "Concerns for Long-Run Risks and Natural Resource Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1051-1093, April.
    9. Hart, Rob & Spiro, Daniel, 2011. "The elephant in Hotelling's room," Energy Policy, Elsevier, vol. 39(12), pages 7834-7838.
    10. Kamiar Mohaddes, 2013. "Econometric modelling of world oil supplies: terminal price and the time to depletion," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 37(2), pages 162-193, June.
    11. Gregor Schwerhoff & Ottmar Edenhofer & Marc Fleurbaey, 2020. "Taxation Of Economic Rents," Journal of Economic Surveys, Wiley Blackwell, vol. 34(2), pages 398-423, April.
    12. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    13. Gronwald, Marc, 2012. "A characterization of oil price behavior — Evidence from jump models," Energy Economics, Elsevier, vol. 34(5), pages 1310-1317.
    14. Hart, Rob, 2016. "Non-renewable resources in the long run," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 1-20.
    15. Ludwig, Markus, 2012. "The Visible Hand: National Oil Companies, Oil Supply and the Ermergence of the Hotelling Rent," Working papers 2012/11, Faculty of Business and Economics - University of Basel.
    16. Beatrix Gaitan & Terry Roe, 2012. "International Trade, Exhaustible-Resource Abundance and Economic Growth," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(1), pages 72-93, January.
    17. Spiro, Daniel, 2014. "Resource prices and planning horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 159-175.
    18. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    19. Nikolaos Kourogenis & Phoebe Koundouri, 2010. "On the Stationarity of Exhaustible Natural Resource Prices," DEOS Working Papers 1022, Athens University of Economics and Business.
    20. Kourogenis, Nikolaos & Koundouri, Phoebe, 2010. "On the Stationarity of Exhaustible Natural Resource Prices: Misspecification Effects Arising from Incomplete Models," MPRA Paper 122473, University Library of Munich, Germany.

    More about this item

    Keywords

    Oil scarcity; Drilling; United States;
    All these keywords.

    JEL classification:

    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices
    • Q35 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Hydrocarbon Resources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:69:y:2018:i:c:p:261-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.