IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v34y2012is3ps444-s450.html
   My bibliography  Save this article

The role of China in mitigating climate change

Author

Listed:
  • Paltsev, Sergey
  • Morris, Jennifer
  • Cai, Yongxia
  • Karplus, Valerie
  • Jacoby, Henry

Abstract

We explore short- and long-term implications of several energy scenarios of China's role in efforts to mitigate global climate risk. The focus is on the impacts on China's energy system and GDP growth, and on global climate indicators such as greenhouse gas concentrations, radiative forcing, and global temperature change. We employ the MIT Integrated Global System Model (IGSM) framework and its economic component, the MIT Emissions Prediction and Policy Analysis (EPPA) model. We demonstrate that China's commitments for 2020, made during the UN climate meetings in Copenhagen and Cancun, are reachable at very modest cost. Alternative actions by China in the next 10years do not yield any substantial changes in GHG concentrations or temperature due to inertia in the climate system. Consideration of the longer-term climate implications of the Copenhagen-type of commitments requires an assumption about policies after 2020, and the effects differ drastically depending on the case. Meeting a 2°C target is problematic unless radical GHG emission reductions are assumed in the short-term. Participation or non-participation of China in global climate architecture can lead by 2100 to a 200–280ppm difference in atmospheric GHG concentration, which can result in a 1.1°C to 1.3°C change by the end of the century. We conclude that it is essential to engage China in GHG emissions mitigation policies, and alternative actions lead to substantial differences in climate, energy, and economic outcomes. Potential channels for engaging China can be air pollution control and involvement in sectoral trading with established emissions trading systems in developed countries.

Suggested Citation

  • Paltsev, Sergey & Morris, Jennifer & Cai, Yongxia & Karplus, Valerie & Jacoby, Henry, 2012. "The role of China in mitigating climate change," Energy Economics, Elsevier, vol. 34(S3), pages 444-450.
  • Handle: RePEc:eee:eneeco:v:34:y:2012:i:s3:p:s444-s450
    DOI: 10.1016/j.eneco.2012.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988312000849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2012.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronald Prinn & Sergey Paltsev & Andrei Sokolov & Marcus Sarofim & John Reilly & Henry Jacoby, 2011. "Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches," Climatic Change, Springer, vol. 104(3), pages 515-537, February.
    2. Sergey V. Paltsev, 2001. "The Kyoto Protocol: Regional and Sectoral Contributions to the Carbon Leakage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 53-80.
    3. Paltsev, Sergey, 2011. "Russia's Natural Gas Export Potential up to 2050," Conference papers 332080, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Fan Zhai (ed.), 2009. "From Growth to Convergence," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-25060-4.
    5. Aldy,Joseph E. & Stavins,Robert N. (ed.), 2009. "Post-Kyoto International Climate Policy," Cambridge Books, Cambridge University Press, number 9780521129527.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danwei Zhang & Sergey Paltsev, 2016. "The Future Of Natural Gas In China: Effects Of Pricing Reform And Climate Policy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-32, November.
    2. Ward, Hauke & Radebach, Alexander & Vierhaus, Ingmar & Fügenschuh, Armin & Steckel, Jan Christoph, 2017. "Reducing global CO2 emissions with the technologies we have," Resource and Energy Economics, Elsevier, vol. 49(C), pages 201-217.
    3. Cheng, Beibei & Dai, Hancheng & Wang, Peng & Xie, Yang & Chen, Li & Zhao, Daiqing & Masui, Toshihiko, 2016. "Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China," Energy Policy, Elsevier, vol. 88(C), pages 515-527.
    4. Bilgili, Faik & Mugaloglu, Erhan & Koçak, Emrah, 2018. "The impact of oil prices on CO2 emissions in China: A Wavelet coherence approach," MPRA Paper 90170, University Library of Munich, Germany.
    5. Octaviano, Claudia & Paltsev, Sergey & Gurgel, Angelo Costa, 2016. "Climate change policy in Brazil and Mexico: Results from the MIT EPPA model," Energy Economics, Elsevier, vol. 56(C), pages 600-614.
    6. Li, Aijun & Hu, Mingming & Wang, Mingjian & Cao, Yinxue, 2016. "Energy consumption and CO2 emissions in Eastern and Central China: A temporal and a cross-regional decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 284-297.
    7. Richard Tol, 2013. "Low probability, high impact: the implications of a break-up of China for carbon dioxide emissions," Climatic Change, Springer, vol. 117(4), pages 961-970, April.
    8. Marzieh Ronaghi & Michael Reed & Sayed Saghaian, 2020. "The impact of economic factors and governance on greenhouse gas emission," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 153-172, April.
    9. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    10. Yujiao Xian & Ke Wang & Xunpeng Shi & Chi Zhang & Yi-Ming Wei & Zhimin Huang, 2018. "Carbon emissions intensity reduction target for China¡¯s power industry: An efficiency and productivity perspective," CEEP-BIT Working Papers 117, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    11. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    12. Lu, Yingying & Stegman, Alison & Cai, Yiyong, 2013. "Emissions intensity targeting: From China's 12th Five Year Plan to its Copenhagen commitment," Energy Policy, Elsevier, vol. 61(C), pages 1164-1177.
    13. Bosello, Francesco & Marangoni, Giacomo & Orecchia, Carlo & Raitzer, David A. & Tavoni, Massimo, 2016. "The Cost of Climate Stabilization in Southeast Asia, a Joint Assessment with Dynamic Optimization and CGE Models," MITP: Mitigation, Innovation and Transformation Pathways 251810, Fondazione Eni Enrico Mattei (FEEM).
    14. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    15. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    16. Calvin, Katherine & Fawcett, Allen & Kejun, Jiang, 2012. "Comparing model results to national climate policy goals: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 306-315.
    17. Zhang, Xingmin & Zhang, Shuai & Lu, Liping, 2022. "The banking instability and climate change: Evidence from China," Energy Economics, Elsevier, vol. 106(C).
    18. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
    19. Rodrigues Cabral, Caroline & Gurgel, Angelo & Paltsev, Sergey, 2015. "Economic analysis of deforestation reduction in Brazil," 2015 Conference, August 9-14, 2015, Milan, Italy 211378, International Association of Agricultural Economists.
    20. Nerea Portillo Juan & Vicente Negro Valdecantos & José María del Campo, 2022. "A New Climate Change Analysis Parameter: A Global or a National Approach Dilemma," Energies, MDPI, vol. 15(4), pages 1-24, February.
    21. Nejat, Payam & Morsoni, Abdul Kasir & Jomehzadeh, Fatemeh & Behzad, Hamid & Saeed Vesali, Mohamad & Majid, M.Z.Abd., 2013. "Iran's achievements in renewable energy during fourth development program in comparison with global trend," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 561-570.
    22. Friedrichs, Jörg & Inderwildi, Oliver R., 2013. "The carbon curse: Are fuel rich countries doomed to high CO2 intensities?," Energy Policy, Elsevier, vol. 62(C), pages 1356-1365.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frankel, Jeffrey A. & Bosetti, Valentina, 2011. "Politically Feasible Emission Target Formulas to Attain 460 ppm CO[subscript 2] Concentrations," Working Paper Series rwp11-016, Harvard University, John F. Kennedy School of Government.
    2. Thomas Norman & Heinrich H. Nax, 2011. "Leading the Way: Coalitional Stability in Technological Cooperation & Sequential Climate Policy," Economics Series Working Papers 585, University of Oxford, Department of Economics.
    3. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    4. Gabriela Michalek & Reimund Schwarze, 2015. "Carbon leakage: pollution, trade or politics?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1471-1492, December.
    5. John Reilly, 2015. "Energy and Development in Emerging Countries," Revue d’économie du développement, De Boeck Université, vol. 23(HS), pages 19-38.
    6. John Reilly & Sergey Paltsev & Ken Strzepek & Noelle Selin & Yongxia Cai & Kyung-Min Nam & Erwan Monier & Stephanie Dutkiewicz & Jeffery Scott & Mort Webster & Andrei Sokolov, 2013. "Valuing climate impacts in integrated assessment models: the MIT IGSM," Climatic Change, Springer, vol. 117(3), pages 561-573, April.
    7. Gilbert E. Metcalf & David Weisbach, 2012. "Linking Policies When Tastes Differ: Global Climate Policy in a Heterogeneous World," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 6(1), pages 110-129.
    8. Stavins, Robert, 2004. "Can an Effective Global Climate Treaty be Based on Sound Science, Rational Economics, and Pragmatic Politics?," Working Paper Series rwp04-020, Harvard University, John F. Kennedy School of Government.
    9. repec:old:wpaper:340 is not listed on IDEAS
    10. Hummels, David & Lugovskyy, Volodymyr & Skiba, Alexandre, 2009. "The trade reducing effects of market power in international shipping," Journal of Development Economics, Elsevier, vol. 89(1), pages 84-97, May.
    11. Zhai, Fan, 2010. "The Benefits of Regional Infrastructure Investment in Asia: A Quantitative Exploration," ADBI Working Papers 223, Asian Development Bank Institute.
    12. Sareh Vosooghi, 2017. "Information Design In Coalition Formation Games," Working Papers 2017.28, Fondazione Eni Enrico Mattei.
    13. Ansink, Erik & Weikard, Hans-Peter & Withagen, Cees, 2019. "International environmental agreements with support," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 241-252.
    14. Anderson, Barry & Leib, Jörg & Martin, Ralf & McGuigan, Marty & Muuls, Mirabelle & Wagner, Ulrich J. & de Preux, Laure B., 2011. "Climate change policy and business in Europe: evidence from interviewing managers," LSE Research Online Documents on Economics 47493, London School of Economics and Political Science, LSE Library.
    15. Valentina Bosetti & Jeffrey A. Frankel, 2009. "Global Climate Policy Architecture and Political Feasibility: Specific Formulas and Emission Targets to Attain 460 ppm CO2 Concentrations," NBER Working Papers 15516, National Bureau of Economic Research, Inc.
    16. Rong, Fang, 2010. "Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa," Energy Policy, Elsevier, vol. 38(8), pages 4582-4591, August.
    17. Alain Bernard & Marc Vielle & Laurent Viguier, 2005. "Premières simulations de la directive européenne sur les quotas d'émission avec le modèle GEMINI-E3," Economie & Prévision, La Documentation Française, vol. 0(3), pages 171-196.
    18. Bård Harstad, 2012. "Buy Coal! A Case for Supply-Side Environmental Policy," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 77-115.
    19. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    20. Dieter Helm & Cameron Hepburn & Giovanni Ruta, 2012. "Trade, climate change, and the political game theory of border carbon adjustments," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 28(2), pages 368-394, SUMMER.
    21. Misato Sato & Karsten Neuhoff & Verena Graichen & Katja Schumacher & Felix Matthes, 2013. "Sectors under scrutiny � Evaluation of indicators to assess the risk of carbon leakage in the UK and Germany," GRI Working Papers 113, Grantham Research Institute on Climate Change and the Environment.

    More about this item

    Keywords

    Climate change; Mitigation; China; Greenhouse gases; Fossil fuels;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • O53 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Asia including Middle East

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:s3:p:s444-s450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.