IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v260y2017i3p984-994.html
   My bibliography  Save this article

Supply chain forecasting when information is not shared

Author

Listed:
  • Ali, Mohammad M.
  • Babai, Mohamed Zied
  • Boylan, John E.
  • Syntetos, A.A.

Abstract

The operations management literature is abundant in discussions on the benefits of information sharing in supply chains. However, there are many supply chains where information may not be shared due to constraints such as compatibility of information systems, information quality, trust and confidentiality. Furthermore, a steady stream of papers has explored a phenomenon known as Downstream Demand Inference (DDI) where the upstream member in a supply chain can infer the downstream demand without the need for a formal information sharing mechanism. Recent research has shown that, under more realistic circumstances, DDI is not possible with optimal forecasting methods or Single Exponential Smoothing but is possible when supply chains use a Simple Moving Average (SMA) method. In this paper, we evaluate a simple DDI strategy based on SMA for supply chains where information cannot be shared. This strategy allows the upstream member in the supply chain to infer the consumer demand mathematically rather than it being shared. We compare the DDI strategy with the No Information Sharing (NIS) strategy and an optimal Forecast Information Sharing (FIS) strategy in the supply chain. The comparison is made analytically and by experimentation on real sales data from a major European supermarket located in Germany. We show that using the DDI strategy improves on NIS by reducing the Mean Square Error (MSE) of the forecasts, and cutting inventory costs in the supply chain.

Suggested Citation

  • Ali, Mohammad M. & Babai, Mohamed Zied & Boylan, John E. & Syntetos, A.A., 2017. "Supply chain forecasting when information is not shared," European Journal of Operational Research, Elsevier, vol. 260(3), pages 984-994.
  • Handle: RePEc:eee:ejores:v:260:y:2017:i:3:p:984-994
    DOI: 10.1016/j.ejor.2016.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716309717
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lode Li & Hongtao Zhang, 2008. "Confidentiality and Information Sharing in Supply Chain Coordination," Management Science, INFORMS, vol. 54(8), pages 1467-1481, August.
    2. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    3. Caliskan-Demirag, Ozgun & (Frank) Chen, Youhua & Li, Jianbin, 2011. "Customer and retailer rebates under risk aversion," International Journal of Production Economics, Elsevier, vol. 133(2), pages 736-750, October.
    4. Vishal Gaur & Avi Giloni & Sridhar Seshadri, 2005. "Information Sharing in a Supply Chain Under ARMA Demand," Management Science, INFORMS, vol. 51(6), pages 961-969, June.
    5. Nesim Erkip & Warren H. Hausman & Steven Nahmias, 1990. "Optimal Centralized Ordering Policies in Multi-Echelon Inventory Systems with Correlated Demands," Management Science, INFORMS, vol. 36(3), pages 381-392, March.
    6. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    7. Hosoda, Takamichi & Disney, Stephen M., 2009. "Impact of market demand mis-specification on a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 121(2), pages 739-751, October.
    8. Duc, Truong Ton Hien & Luong, Huynh Trung & Kim, Yeong-Dae, 2008. "A measure of bullwhip effect in supply chains with a mixed autoregressive-moving average demand process," European Journal of Operational Research, Elsevier, vol. 187(1), pages 243-256, May.
    9. Tonya Boone & Ram Ganeshan, 2008. "The Value of Information Sharing in the Retail Supply Chain: Two Case Studies," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 9, pages 12-17, Spring.
    10. Gao, Long, 2015. "Collaborative forecasting, inventory hedging and contract coordination in dynamic supply risk management," European Journal of Operational Research, Elsevier, vol. 245(1), pages 133-145.
    11. Hosoda, Takamichi & Disney, Stephen M., 2012. "A delayed demand supply chain: Incentives for upstream players," Omega, Elsevier, vol. 40(4), pages 478-487.
    12. Hosoda, Takamichi & Disney, Stephen M., 2006. "On variance amplification in a three-echelon supply chain with minimum mean square error forecasting," Omega, Elsevier, vol. 34(4), pages 344-358, August.
    13. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    14. Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
    15. Chen, Jing, 2011. "The impact of sharing customer returns information in a supply chain with and without a buyback policy," European Journal of Operational Research, Elsevier, vol. 213(3), pages 478-488, September.
    16. John Boylan & Aris Syntetos, 2006. "Accuracy and Accuracy Implication Metrics for Intermittent Demand," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 39-42, June.
    17. Haim Mendelson, 2000. "Organizational Architecture and Success in the Information Technology Industry," Management Science, INFORMS, vol. 46(4), pages 513-529, April.
    18. Heese, H. Sebastian & Kemahlıoğlu-Ziya, Eda, 2016. "Don't ask, don't tell: Sharing revenues with a dishonest retailer," European Journal of Operational Research, Elsevier, vol. 248(2), pages 580-592.
    19. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    20. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    21. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    22. Xiaolong Zhang, 2004. "Evolution of ARMA Demand in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 195-198, April.
    23. Cannella, Salvatore & Framinan, Jose M. & Bruccoleri, Manfredi & Barbosa-Póvoa, Ana Paula & Relvas, Susana, 2015. "The effect of Inventory Record Inaccuracy in Information Exchange Supply Chains," European Journal of Operational Research, Elsevier, vol. 243(1), pages 120-129.
    24. Christian Terwiesch & Z. Justin Ren & Teck H. Ho & Morris A. Cohen, 2005. "An Empirical Analysis of Forecast Sharing in the Semiconductor Equipment Supply Chain," Management Science, INFORMS, vol. 51(2), pages 208-220, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ejores:v:269:y:2018:i:1:p:313-326 is not listed on IDEAS
    2. repec:eee:transe:v:110:y:2018:i:c:p:122-136 is not listed on IDEAS
    3. repec:eee:jomega:v:79:y:2018:i:c:p:116-132 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:260:y:2017:i:3:p:984-994. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.