IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v210y2011i3p514-526.html
   My bibliography  Save this article

Analysis of compound bullwhip effect causes

Author

Listed:
  • Zhang, Xiaolong
  • Burke, Gerard J.

Abstract

This research investigates compound causes of the bullwhip effect (BWE) by considering an inventory system with multiple price-sensitive demand streams. Joint price and demand dynamics are captured by a vector time-series process that incorporates the stochastic co-movements in price and demand. We study two BWE measures, one for each demand stream individually and one for the aggregated demand. We show that demand parameters including demand autocorrelation, cross-correlation, and price sensitivity serve as root causes of the BWE. We prove that the impact of these parameters on the BWE can be additively decomposed. Conditions are established under which a pair of simultaneous compound causes may attenuate or dampen the BWE. When demand streams are aggregated, we derive a pooling factor that quantifies the impact of demand aggregation on order stability. When positive, the pooling factor corresponds to a synergy effect that captures the gain in the stability of the pooled orders. Conditions for the existence of the synergy effect are obtained for several special cases involving a zero leadtime. We also discuss how our analytical findings can be managerially applied to bullwhip mitigation strategies.

Suggested Citation

  • Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
  • Handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:514-526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00628-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaksic, Marko & Rusjan, Borut, 2008. "The effect of replenishment policies on the bullwhip effect: A transfer function approach," European Journal of Operational Research, Elsevier, vol. 184(3), pages 946-961, February.
    2. Awi Federgruen & Aliza Heching, 1999. "Combined Pricing and Inventory Control Under Uncertainty," Operations Research, INFORMS, vol. 47(3), pages 454-475, June.
    3. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    4. Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
    5. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    6. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    7. G. Dekimpe, Marnik & Hanssens, Dominique M. & Silva-Risso, Jorge M., 1998. "Long-run effects of price promotions in scanner markets," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 269-291, November.
    8. Vishal Gaur & Avi Giloni & Sridhar Seshadri, 2005. "Information Sharing in a Supply Chain Under ARMA Demand," Management Science, INFORMS, vol. 51(6), pages 961-969, June.
    9. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    10. G. D. Johnson & H. E. Thompson, 1975. "Optimality of Myopic Inventory Policies for Certain Dependent Demand Processes," Management Science, INFORMS, vol. 21(11), pages 1303-1307, July.
    11. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    12. Jan A. Van Mieghem, 2007. "Risk Mitigation in Newsvendor Networks: Resource Diversification, Flexibility, Sharing, and Hedging," Management Science, INFORMS, vol. 53(8), pages 1269-1288, August.
    13. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect"," Management Science, INFORMS, vol. 50(12_supple), pages 1887-1893, December.
    14. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.
    15. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 50(12_supple), pages 1875-1886, December.
    16. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    17. Özelkan, Ertunga C. & ÇakanyIldIrIm, Metin, 2009. "Reverse bullwhip effect in pricing," European Journal of Operational Research, Elsevier, vol. 192(1), pages 302-312, January.
    18. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    19. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    20. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    21. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.
    22. Charles J. Corbett & Kumar Rajaram, 2006. "A Generalization of the Inventory Pooling Effect to Nonnormal Dependent Demand," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 351-358, August.
    23. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    24. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
    25. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    26. Harrison, J. Michael & Van Mieghem, Jan A., 1999. "Multi-resource investment strategies: Operational hedging under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 113(1), pages 17-29, February.
    27. Xiaolong Zhang, 2004. "Evolution of ARMA Demand in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 195-198, April.
    28. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    29. Yossi Aviv, 2001. "The Effect of Collaborative Forecasting on Supply Chain Performance," Management Science, INFORMS, vol. 47(10), pages 1326-1343, October.
    30. Jaksic, Marko & Rusjan, Borut, 2008. "Corrigendum to "The effect of replenishment policies on the bullwhip effect: A transfer function approach" [European Journal of Operational Research 184 (3) (2008) 946-961]," European Journal of Operational Research, Elsevier, vol. 188(1), pages 313-312, July.
    31. Marnik G. Dekimpe & Dominique M. Hanssens, 1995. "Empirical Generalizations About Market Evolution and Stationarity," Marketing Science, INFORMS, vol. 14(3_supplem), pages 109-121.
    32. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2004. "The impact of information enrichment on the Bullwhip effect in supply chains: A control engineering perspective," European Journal of Operational Research, Elsevier, vol. 153(3), pages 727-750, March.
    33. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    34. Arthur F. Veinott, Jr., 1965. "Optimal Policy for a Multi-Product, Dynamic, Nonstationary Inventory Problem," Management Science, INFORMS, vol. 12(3), pages 206-222, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    2. Spiegler, Virginia L.M. & Naim, Mohamed M. & Towill, Denis R. & Wikner, Joakim, 2016. "A technique to develop simplified and linearised models of complex dynamic supply chain systems," European Journal of Operational Research, Elsevier, vol. 251(3), pages 888-903.
    3. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    4. Dai, Hongyan & Li, Jianbin & Yan, Nina & Zhou, Weihua, 2016. "Bullwhip effect and supply chain costs with low- and high-quality information on inventory shrinkage," European Journal of Operational Research, Elsevier, vol. 250(2), pages 457-469.
    5. Ponte, Borja & Puche, Julio & Rosillo, Rafael & de la Fuente, David, 2020. "The effects of quantity discounts on supply chain performance: Looking through the Bullwhip lens," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    6. Karl Inderfurth & Peter Kelle & Rainer Kleber, 2018. "Inventory control in dual sourcing commodity procurement with price correlation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 93-119, March.
    7. Karl Inderfurth & Peter Kelle & Rainer Kleber, 2014. "The Effect of Material Price and Product Demand Correlations on Combined Sourcing and Inventory Management," FEMM Working Papers 140013, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    8. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    9. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    10. Sadeghi, Ahmad, 2015. "Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts," International Journal of Production Economics, Elsevier, vol. 169(C), pages 44-54.
    11. Nagaraja, Chaitra H. & McElroy, Tucker, 2018. "The multivariate bullwhip effect," European Journal of Operational Research, Elsevier, vol. 267(1), pages 96-106.
    12. Zhu, Tianyuan & Balakrishnan, Jaydeep & da Silveira, Giovani J.C., 2020. "Bullwhip effect in the oil and gas supply chain: A multiple-case study," International Journal of Production Economics, Elsevier, vol. 224(C).
    13. Rahal, Imen & Elloumi, Abdelkarim, 2022. "The analysis of the Bullwhip effect on the supply chain management of perishable products," MPRA Paper 117992, University Library of Munich, Germany.
    14. Boylan, John E. & Babai, M. Zied, 2016. "On the performance of overlapping and non-overlapping temporal demand aggregation approaches," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 136-144.
    15. Junhai Ma & Wandong Lou, 2017. "Complex Characteristics of Multichannel Household Appliance Supply Chain with the Price Competition," Complexity, Hindawi, vol. 2017, pages 1-12, March.
    16. Junhai Ma & Xiaogang Ma, 2017. "Measure of the bullwhip effect considering the market competition between two retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 313-326, January.
    17. Garcia Salcedo, Carlos Andres & Ibeas Hernandez, Asier & Vilanova, Ramón & Herrera Cuartas, Jorge, 2013. "Inventory control of supply chains: Mitigating the bullwhip effect by centralized and decentralized Internal Model Control approaches," European Journal of Operational Research, Elsevier, vol. 224(2), pages 261-272.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    2. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    3. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.
    4. Wang, Zhaodong & Wang, Xin & Ouyang, Yanfeng, 2015. "Bounded growth of the bullwhip effect under a class of nonlinear ordering policies," European Journal of Operational Research, Elsevier, vol. 247(1), pages 72-82.
    5. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
    6. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
    7. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.
    8. Enrique Holgado de Frutos & Juan R Trapero & Francisco Ramos, 2020. "A literature review on operational decisions applied to collaborative supply chains," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-28, March.
    9. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    10. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    11. Agrawal, Sunil & Sengupta, Raghu Nandan & Shanker, Kripa, 2009. "Impact of information sharing and lead time on bullwhip effect and on-hand inventory," European Journal of Operational Research, Elsevier, vol. 192(2), pages 576-593, January.
    12. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    13. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    14. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    15. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    16. QU, Zhan & RAFF, Horst, 2023. "Two-part tariffs, inventory stockpiling, and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 308(1), pages 201-214.
    17. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    18. de Lima, Daruichi Pereira & Fioriolli, José Carlos & Padula, Antonio Domingos & Pumi, Guilherme, 2018. "The impact of Chinese imports of soybean on port infrastructure in Brazil: A study based on the concept of the “Bullwhip Effect”," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 55-76.
    19. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    20. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:514-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.