IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v181y2016ipap130-135.html
   My bibliography  Save this article

Reduction of the value of information sharing as demand becomes strongly auto-correlated

Author

Listed:
  • Babai, M.Z.
  • Boylan, J.E.
  • Syntetos, A.A.
  • Ali, M.M.

Abstract

Information sharing has been identified, in the academic literature, as one of the most important levers to mitigate the bullwhip effect in supply chains. A highly-cited article on the bullwhip effect has claimed that the percentage inventory reduction resulting from information sharing in a two level supply chain, when the downstream demand is autoregressive of order one, is an increasing function of the autoregressive parameter of the demand. In this paper we show that this is true only for a certain range of the autoregressive parameter and there is a maximum value beyond which the bullwhip ratio at the upstream stage is reduced and the percentage inventory reduction resulting from information sharing decreases towards zero. We also show that this maximum value of the autoregressive parameter can be as high as 0.7 which represents a common value that may be encountered in many practical contexts. This means that large benefits of information sharing cannot be assumed for those Stock Keeping Units (SKUs) with highly positively auto-correlated demand. Instead, equally careful analysis is needed for these items as for those SKUs with less strongly auto-correlated demand.

Suggested Citation

  • Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
  • Handle: RePEc:eee:proeco:v:181:y:2016:i:pa:p:130-135
    DOI: 10.1016/j.ijpe.2015.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315001462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Yuliang & Dresner, Martin, 2008. "The inventory value of information sharing, continuous replenishment, and vendor-managed inventory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 361-378, May.
    2. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    3. Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
    4. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    5. Vishal Gaur & Avi Giloni & Sridhar Seshadri, 2005. "Information Sharing in a Supply Chain Under ARMA Demand," Management Science, INFORMS, vol. 51(6), pages 961-969, June.
    6. Nesim Erkip & Warren H. Hausman & Steven Nahmias, 1990. "Optimal Centralized Ordering Policies in Multi-Echelon Inventory Systems with Correlated Demands," Management Science, INFORMS, vol. 36(3), pages 381-392, March.
    7. Susan Cohen Kulp & Hau L. Lee & Elie Ofek, 2004. "Manufacturer Benefits from Information Integration with Retail Customers," Management Science, INFORMS, vol. 50(4), pages 431-444, April.
    8. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    9. Zhang, Juliang & Chen, Jian, 2013. "Coordination of information sharing in a supply chain," International Journal of Production Economics, Elsevier, vol. 143(1), pages 178-187.
    10. Tonya Boone & Ram Ganeshan, 2008. "The Value of Information Sharing in the Retail Supply Chain: Two Case Studies," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 9, pages 12-17, Spring.
    11. Gérard P. Cachon, 1999. "Managing Supply Chain Demand Variability with Scheduled Ordering Policies," Management Science, INFORMS, vol. 45(6), pages 843-856, June.
    12. Y Barlas & B Gunduz, 2011. "Demand forecasting and sharing strategies to reduce fluctuations and the bullwhip effect in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 458-473, March.
    13. Agrawal, Sunil & Sengupta, Raghu Nandan & Shanker, Kripa, 2009. "Impact of information sharing and lead time on bullwhip effect and on-hand inventory," European Journal of Operational Research, Elsevier, vol. 192(2), pages 576-593, January.
    14. Z Yu & H Yan & T C E Cheng, 2002. "Modelling the benefits of information sharing-based partnerships in a two-level supply chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(4), pages 436-446, April.
    15. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    16. M M Ali & J E Boylan, 2011. "Feasibility principles for Downstream Demand Inference in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 474-482, March.
    17. Disney, Stephen M. & Lambrecht, Marc R., 2008. "On Replenishment Rules, Forecasting, and the Bullwhip Effect in Supply Chains," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 2(1), pages 1-80, April.
    18. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    19. Luong, Huynh Trung, 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1086-1097, August.
    20. Machuca, José A. D. & Barajas, Rafael P., 2004. "The impact of electronic data interchange on reducing bullwhip effect and supply chain inventory costs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 209-228, May.
    21. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    22. Disney, S. M. & Naim, M. M. & Potter, A., 2004. "Assessing the impact of e-business on supply chain dynamics," International Journal of Production Economics, Elsevier, vol. 89(2), pages 109-118, May.
    23. Gérard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
    24. Trapero, Juan R. & Kourentzes, N. & Fildes, R., 2012. "Impact of information exchange on supplier forecasting performance," Omega, Elsevier, vol. 40(6), pages 738-747.
    25. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    26. Xiaolong Zhang, 2004. "Evolution of ARMA Demand in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 195-198, April.
    27. Noblesse, Ann M. & Boute, Robert N. & Lambrecht, Marc R. & Van Houdt, Benny, 2014. "Characterizing order processes of continuous review (s,S) and (r,nQ) policies," European Journal of Operational Research, Elsevier, vol. 236(2), pages 534-547.
    28. Luong, Huynh Trung & Phien, Nguyen Huu, 2007. "Measure of bullwhip effect in supply chains: The case of high order autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 183(1), pages 197-209, November.
    29. Hosoda, Takamichi & Disney, Stephen M., 2006. "On variance amplification in a three-echelon supply chain with minimum mean square error forecasting," Omega, Elsevier, vol. 34(4), pages 344-358, August.
    30. Raghunathan, Srinivasan, 2003. "Impact of demand correlation on the value of and incentives for information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 146(3), pages 634-649, May.
    31. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    32. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2004. "The impact of information enrichment on the Bullwhip effect in supply chains: A control engineering perspective," European Journal of Operational Research, Elsevier, vol. 153(3), pages 727-750, March.
    33. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    34. T C E Cheng & Y N Wu, 2005. "The impact of information sharing in a two-level supply chain with multiple retailers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1159-1165, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dejian Yu & Zhaoping Yan, 2021. "Knowledge diffusion of supply chain bullwhip effect: main path analysis and science mapping analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8491-8515, October.
    2. Roberto Dominguez & Borja Ponte & Salvatore Cannella & Jose M. Framinan, 2019. "Building Resilience in Closed-Loop Supply Chains through Information-Sharing Mechanisms," Sustainability, MDPI, vol. 11(23), pages 1-4, November.
    3. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    4. Sun, Zhengwei & Hupman, Andrea C. & Abbas, Ali E., 2021. "The value of information for price dependent demand," European Journal of Operational Research, Elsevier, vol. 288(2), pages 511-522.
    5. Dominguez, Roberto & Cannella, Salvatore & Framinan, Jose M., 2021. "Remanufacturing configuration in complex supply chains," Omega, Elsevier, vol. 101(C).
    6. Ionel Elena-Simona & Miron Alexandra-Dorina, 2023. "Bullwhip Effect Demand Variation and Amplification within Supply Chains," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 246-253, July.
    7. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    8. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "OVAP: A strategy to implement partial information sharing among supply chain retailers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 122-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    2. Ali, Mohammad M. & Babai, Mohamed Zied & Boylan, John E. & Syntetos, A.A., 2017. "Supply chain forecasting when information is not shared," European Journal of Operational Research, Elsevier, vol. 260(3), pages 984-994.
    3. Tliche, Y. & Taghipour, A. & Canel-Depitre, B., 2019. "Downstream Demand Inference in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 274(1), pages 65-77.
    4. Cannella, Salvatore & Framinan, Jose M. & Bruccoleri, Manfredi & Barbosa-Póvoa, Ana Paula & Relvas, Susana, 2015. "The effect of Inventory Record Inaccuracy in Information Exchange Supply Chains," European Journal of Operational Research, Elsevier, vol. 243(1), pages 120-129.
    5. Enrique Holgado de Frutos & Juan R Trapero & Francisco Ramos, 2020. "A literature review on operational decisions applied to collaborative supply chains," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-28, March.
    6. M M Ali & J E Boylan, 2011. "Feasibility principles for Downstream Demand Inference in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 474-482, March.
    7. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    8. Rupesh Kumar Pati, 2014. "Modelling Bullwhip Effect in a Closed Loop Supply Chain with ARMA Demand," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 149-164, July.
    9. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    10. Gaalman, Gerard & Disney, Stephen M. & Wang, Xun, 2022. "When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand," International Journal of Production Economics, Elsevier, vol. 250(C).
    11. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    12. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    13. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    14. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    15. Tliche, Youssef & Taghipour, Atour & Canel-Depitre, Béatrice, 2020. "An improved forecasting approach to reduce inventory levels in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 287(2), pages 511-527.
    16. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    17. Nepal, Bimal & Murat, Alper & Babu Chinnam, Ratna, 2012. "The bullwhip effect in capacitated supply chains with consideration for product life-cycle aspects," International Journal of Production Economics, Elsevier, vol. 136(2), pages 318-331.
    18. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    19. Lu, Jizhou & Feng, Gengzhong & Shum, Stephen & Lai, Kin Keung, 2021. "On the value of information sharing in the presence of information errors," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1139-1152.
    20. Roberto Dominguez & Salvatore Cannella & Borja Ponte & Jose M. Framinan, 2022. "Information sharing in decentralised supply chains with partial collaboration," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 263-292, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:181:y:2016:i:pa:p:130-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.