IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v34y2006i4p344-358.html
   My bibliography  Save this article

On variance amplification in a three-echelon supply chain with minimum mean square error forecasting

Author

Listed:
  • Hosoda, Takamichi
  • Disney, Stephen M.

Abstract

We analyse a three echelon supply chain model. First-order autoregressive end consumer demand is assumed. We obtain exact analytical expressions for bullwhip and net inventory variance at each echelon in the supply chain. All of the three supply chain participants employ the order-up-to policy with the minimum mean square error forecasting scheme. After demonstrating that the character of the stochastic ordering process observed at each level of the supply chain is mathematically tractable, we show that the upper stream participants have complete information of the market demand process. Then we quantify the bullwhip produced by the system, together with the amplification ratios of the variance of the net inventory levels. Our analysis reveals that the level of the supply chain has no impact upon the bullwhip effect, rather bullwhip is determined by the accumulated lead-time from the customer and the local replenishment lead-time. We also find that the conditional variance of the forecast error over the lead-time is identical to the variance of the net inventory levels and that the net inventory variance is dominated by the local replenishment lead-time.

Suggested Citation

  • Hosoda, Takamichi & Disney, Stephen M., 2006. "On variance amplification in a three-echelon supply chain with minimum mean square error forecasting," Omega, Elsevier, vol. 34(4), pages 344-358, August.
  • Handle: RePEc:eee:jomega:v:34:y:2006:i:4:p:344-358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00177-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    2. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    3. Yossi Aviv, 2002. "Gaining Benefits from Joint Forecasting and Replenishment Processes: The Case of Auto-Correlated Demand," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 55-74, December.
    4. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    5. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2004. "The impact of information enrichment on the Bullwhip effect in supply chains: A control engineering perspective," European Journal of Operational Research, Elsevier, vol. 153(3), pages 727-750, March.
    6. Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
    7. G. D. Johnson & H. E. Thompson, 1975. "Optimality of Myopic Inventory Policies for Certain Dependent Demand Processes," Management Science, INFORMS, vol. 21(11), pages 1303-1307, July.
    8. Xu, Kefeng & Dong, Yan & Evers, Philip T., 2001. "Towards better coordination of the supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(1), pages 35-54, March.
    9. Disney, S. M. & Towill, D. R., 2003. "On the bullwhip and inventory variance produced by an ordering policy," Omega, Elsevier, vol. 31(3), pages 157-167, June.
    10. Kahn, James A, 1987. "Inventories and the Volatility of Production," American Economic Review, American Economic Association, vol. 77(4), pages 667-679, September.
    11. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    12. Herbert J. Vassian, 1955. "Application of Discrete Variable Servo Theory to Inventory Control," Operations Research, INFORMS, vol. 3(3), pages 272-282, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    2. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    3. Zhao, Xiande & Xie, Jinxing & Wei, Jerry C., 2007. "The value of early order commitment in a two-level supply chain," European Journal of Operational Research, Elsevier, vol. 180(1), pages 194-214, July.
    4. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    5. Hosoda, Takamichi & Disney, Stephen M., 2009. "Impact of market demand mis-specification on a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 121(2), pages 739-751, October.
    6. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    7. Agrawal, Sunil & Sengupta, Raghu Nandan & Shanker, Kripa, 2009. "Impact of information sharing and lead time on bullwhip effect and on-hand inventory," European Journal of Operational Research, Elsevier, vol. 192(2), pages 576-593, January.
    8. Junhai Ma & Xiaogang Ma, 2017. "Measure of the bullwhip effect considering the market competition between two retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 313-326, January.
    9. B D Williams & M A Waller, 2011. "Estimating a retailer's base stock level: an optimal distribution center order forecast policy," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 662-666, April.
    10. Nepal, Bimal & Murat, Alper & Babu Chinnam, Ratna, 2012. "The bullwhip effect in capacitated supply chains with consideration for product life-cycle aspects," International Journal of Production Economics, Elsevier, vol. 136(2), pages 318-331.
    11. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    12. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    13. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    14. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    15. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    16. Duc, Truong Ton Hien & Luong, Huynh Trung & Kim, Yeong-Dae, 2008. "A measure of bullwhip effect in supply chains with a mixed autoregressive-moving average demand process," European Journal of Operational Research, Elsevier, vol. 187(1), pages 243-256, May.
    17. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    18. Bayraktar, Erkan & Lenny Koh, S.C. & Gunasekaran, A. & Sari, Kazim & Tatoglu, Ekrem, 2008. "The role of forecasting on bullwhip effect for E-SCM applications," International Journal of Production Economics, Elsevier, vol. 113(1), pages 193-204, May.
    19. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    20. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:34:y:2006:i:4:p:344-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.