IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v9y2018icp55-76.html
   My bibliography  Save this article

The impact of Chinese imports of soybean on port infrastructure in Brazil: A study based on the concept of the “Bullwhip Effect”

Author

Listed:
  • de Lima, Daruichi Pereira
  • Fioriolli, José Carlos
  • Padula, Antonio Domingos
  • Pumi, Guilherme

Abstract

Brazil is a continental country and the major soybean production areas are located far from the ports. Thus, the storage, transport and port infrastructure represent an important factor in the export of the product. China is the largest importer of Brazilian soybean, with monthly and yearly volumes variability. This study aims to identify the impact of the variation in export volumes of soybean to China on the Brazilian port infrastructure, exploiting the concept of the ‘bullwhip’ effect (BE). Data on the export volumes of the five largest soybean-producing States is used to calculate the extent of the bullwhip effect caused by the demands for port services from these producer States on the main exporting ports. Beyond the variability of Chinese demand, climatic conditions contributed to produce bullwhip effect up to 2.0 in 2011, causing pressure on the ports of Santos and Paranagua. The research results suggest that to reduce the bullwhip effects provoked by the Midwest Producers-States, it will be necessary to design informational and coordination mechanisms to integrate the logistical agents involved in the export process and to invest on infrastructure (storage capacity).

Suggested Citation

  • de Lima, Daruichi Pereira & Fioriolli, José Carlos & Padula, Antonio Domingos & Pumi, Guilherme, 2018. "The impact of Chinese imports of soybean on port infrastructure in Brazil: A study based on the concept of the “Bullwhip Effect”," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 55-76.
  • Handle: RePEc:eee:jocoma:v:9:y:2018:i:c:p:55-76
    DOI: 10.1016/j.jcomm.2017.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851316301106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2017.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    2. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect"," Management Science, INFORMS, vol. 50(12_supple), pages 1887-1893, December.
    3. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 50(12_supple), pages 1875-1886, December.
    4. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    5. Michael J. Roberts & Wolfram Schlenker, 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate," American Economic Review, American Economic Association, vol. 103(6), pages 2265-2295, October.
    6. An, Kun & Ouyang, Yanfeng, 2016. "Robust grain supply chain design considering post-harvest loss and harvest timing equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 110-128.
    7. Nicholas Kaldor, 1934. "A Classificatory Note on the Determinateness of Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 1(2), pages 122-136.
    8. Song, Baohui & Marchant, Mary A. & Reed, Michael R. & Xu, Shuang, 2009. "Competitive Analysis and Market Power of China’s Soybean Import Market," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 12(1), pages 1-22, February.
    9. Towill, Denis R. & Zhou, Li & Disney, Stephen M., 2007. "Reducing the bullwhip effect: Looking through the appropriate lens," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 444-453, July.
    10. Westerhoff, Frank & Wieland, Cristian, 2010. "A behavioral cobweb-like commodity market model with heterogeneous speculators," Economic Modelling, Elsevier, vol. 27(5), pages 1136-1143, September.
    11. Sucky, Eric, 2009. "The bullwhip effect in supply chains--An overestimated problem?," International Journal of Production Economics, Elsevier, vol. 118(1), pages 311-322, March.
    12. Isaksson, Olov H.D. & Seifert, Ralf W., 2016. "Quantifying the bullwhip effect using two-echelon data: A cross-industry empirical investigation," International Journal of Production Economics, Elsevier, vol. 171(P3), pages 311-320.
    13. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    14. Brent Hueth, 2000. "The Goals of U.S. Agricultural Policy: A Mechanism Design Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(1), pages 14-24.
    15. Mundlak, Yair & Larson, Donald F, 1992. "On the Transmission of World Agricultural Prices," The World Bank Economic Review, World Bank, vol. 6(3), pages 399-422, September.
    16. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2004. "The impact of information enrichment on the Bullwhip effect in supply chains: A control engineering perspective," European Journal of Operational Research, Elsevier, vol. 153(3), pages 727-750, March.
    17. Disney, S.M. & Farasyn, I. & Lambrecht, M. & Towill, D.R. & de Velde, W. Van, 2006. "Taming the bullwhip effect whilst watching customer service in a single supply chain echelon," European Journal of Operational Research, Elsevier, vol. 173(1), pages 151-172, August.
    18. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    19. Khalid Bichou & Richard Gray, 2004. "A logistics and supply chain management approach to port performance measurement," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(1), pages 47-67, January.
    20. Geary, S. & Disney, S.M. & Towill, D.R., 2006. "On bullwhip in supply chains--historical review, present practice and expected future impact," International Journal of Production Economics, Elsevier, vol. 101(1), pages 2-18, May.
    21. Wright, David & Yuan, Xin, 2008. "Mitigating the bullwhip effect by ordering policies and forecasting methods," International Journal of Production Economics, Elsevier, vol. 113(2), pages 587-597, June.
    22. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    23. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    24. Agrawal, Sunil & Sengupta, Raghu Nandan & Shanker, Kripa, 2009. "Impact of information sharing and lead time on bullwhip effect and on-hand inventory," European Journal of Operational Research, Elsevier, vol. 192(2), pages 576-593, January.
    25. Wang, Grace W.Y. & Zeng, Qingcheng & Li, Kevin & Yang, Jinglei, 2016. "Port connectivity in a logistic network: The case of Bohai Bay, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 341-354.
    26. Mordecai Ezekiel, 1938. "The Cobweb Theorem," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 52(2), pages 255-280.
    27. Tatiane Almeida Menezes & Marie-Gabrielle Piketty, 2011. "Towards a better estimation of agricultural supply elasticity: the case of soybean in Brazil," Post-Print hal-00717977, HAL.
    28. Carter, Colin A. & Chalfant, James A. & Yavapolkul, Navin & Carroll, Christine L., 2016. "International commodity trade, transport costs, and product differentiation," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 65-76.
    29. Disney, S. M. & Towill, D. R., 2003. "The effect of vendor managed inventory (VMI) dynamics on the Bullwhip Effect in supply chains," International Journal of Production Economics, Elsevier, vol. 85(2), pages 199-215, August.
    30. Machuca, José A. D. & Barajas, Rafael P., 2004. "The impact of electronic data interchange on reducing bullwhip effect and supply chain inventory costs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 209-228, May.
    31. Mario A. Margarido & Frederico A. Turolla & Carlos R. F. Bueno, 2007. "The world market for soybeans: price transmission into Brazil and effects from the timing of crop and trade," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 17(2), pages 241-270, May-Augus.
    32. Bayraktar, Erkan & Lenny Koh, S.C. & Gunasekaran, A. & Sari, Kazim & Tatoglu, Ekrem, 2008. "The role of forecasting on bullwhip effect for E-SCM applications," International Journal of Production Economics, Elsevier, vol. 113(1), pages 193-204, May.
    33. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    34. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Shuhui & Cui, Xuefeng, 2023. "Large-scale production: A possible way to the balance between feed grain security and meat security in China," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14, pages 1-1.
    2. Filippi, Amanda Cristina Gaban & Cunha, Cleyzer Adrian da & Guarnieri, Patricia & Wander, Alcido Elenor, 2023. "Determinant factors of the Rural Warehouse Condominium collective action model," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 61(1), January.
    3. Amanda Cristina Gaban Filippi & Patricia Guarnieri & Cleyzer Adrian da Cunha & Alcido Elenor Wander, 2022. "The Logic of Collective Action for Rural Warehouse Condominiums," Logistics, MDPI, vol. 6(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    2. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    3. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    4. Zhu, Tianyuan & Balakrishnan, Jaydeep & da Silveira, Giovani J.C., 2020. "Bullwhip effect in the oil and gas supply chain: A multiple-case study," International Journal of Production Economics, Elsevier, vol. 224(C).
    5. Dominguez, Roberto & Cannella, Salvatore & Framinan, Jose M., 2015. "On returns and network configuration in supply chain dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 152-167.
    6. Enrique Holgado de Frutos & Juan R Trapero & Francisco Ramos, 2020. "A literature review on operational decisions applied to collaborative supply chains," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-28, March.
    7. Cannella, Salvatore & Framinan, Jose M. & Bruccoleri, Manfredi & Barbosa-Póvoa, Ana Paula & Relvas, Susana, 2015. "The effect of Inventory Record Inaccuracy in Information Exchange Supply Chains," European Journal of Operational Research, Elsevier, vol. 243(1), pages 120-129.
    8. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    9. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    10. Dass, Mayukh & Reshadi, Mehrnoosh & Li, Yuewu, 2023. "An exploration of ripple effects of advertising among major suppliers in a supply chain network," Journal of Business Research, Elsevier, vol. 169(C).
    11. Ponte, Borja & Costas, José & Puche, Julio & Pino, Raúl & de la Fuente, David, 2018. "The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 165-185.
    12. Adenso-Díaz, Belarmino & Moreno, Plácido & Gutiérrez, Ester & Lozano, Sebastián, 2012. "An analysis of the main factors affecting bullwhip in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 135(2), pages 917-928.
    13. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    14. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    15. Ciancimino, Elena & Cannella, Salvatore & Canca Ortiz, José David & Framiñán Torres, José Manuel, 2009. "Análisis multinivel de cadenas de suministros: dos técnicas de resolución del efecto bullwhip // Supply Chain Multi-level Analysis: Two Bullwhip Dampening Approaches," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 8(1), pages 7-28, December.
    16. Roberto Dominguez & Salvatore Cannella & Borja Ponte & Jose M. Framinan, 2022. "Information sharing in decentralised supply chains with partial collaboration," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 263-292, June.
    17. Özelkan, Ertunga C. & Lim, Churlzu & Adnan, Ziaul Haq, 2018. "Conditions of reverse bullwhip effect in pricing under joint decision of replenishment and pricing," International Journal of Production Economics, Elsevier, vol. 200(C), pages 207-223.
    18. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    19. Bayraktar, Erkan & Lenny Koh, S.C. & Gunasekaran, A. & Sari, Kazim & Tatoglu, Ekrem, 2008. "The role of forecasting on bullwhip effect for E-SCM applications," International Journal of Production Economics, Elsevier, vol. 113(1), pages 193-204, May.
    20. Chiang, Chung-Yean & Lin, Winston T. & Suresh, Nallan C., 2016. "An empirically-simulated investigation of the impact of demand forecasting on the bullwhip effect: Evidence from U.S. auto industry," International Journal of Production Economics, Elsevier, vol. 177(C), pages 53-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:9:y:2018:i:c:p:55-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.