IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v269y2018i1p313-326.html
   My bibliography  Save this article

A unified theory of the dynamics of closed-loop supply chains

Author

Listed:
  • Hosoda, Takamichi
  • Disney, Stephen M.

Abstract

We investigate the dynamics of a closed-loop supply chain with first-order auto-regressive (AR(1)) demand and return processes. We assume these two processes are cross-correlated. The remanufacturing process is subject to a random triage yield. Remanufactured products are considered as-good-as-new and used to partially satisfy market demand; newly manufactured products make up the remainder. We derive the optimal linear policy in our closed-loop supply chain setting to minimise the manufacturer’s inventory costs. We show that the lead-time paradox can emerge in many cases. In particular, the auto- and cross-correlation parameters and variances of the error terms in the demand and the returns, as well as the remanufacturing lead time, all influence the existence of the lead-time paradox. Finally, we propose managerial recommendations for manufacturers.

Suggested Citation

  • Hosoda, Takamichi & Disney, Stephen M., 2018. "A unified theory of the dynamics of closed-loop supply chains," European Journal of Operational Research, Elsevier, vol. 269(1), pages 313-326.
  • Handle: RePEc:eee:ejores:v:269:y:2018:i:1:p:313-326
    DOI: 10.1016/j.ejor.2017.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717306471
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inderfurth, Karl & van der Laan, Erwin, 2001. "Leadtime effects and policy improvement for stochastic inventory control with remanufacturing," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 381-390, May.
    2. Sadeghi, Ahmad, 2015. "Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts," International Journal of Production Economics, Elsevier, vol. 169(C), pages 44-54.
    3. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    4. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    5. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    6. Hedenstierna, Carl Philip T. & Disney, Stephen M., 2016. "Inventory performance under staggered deliveries and autocorrelated demand," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1082-1091.
    7. Candace Arai Yano & Hau L. Lee, 1995. "Lot Sizing with Random Yields: A Review," Operations Research, INFORMS, vol. 43(2), pages 311-334, April.
    8. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    9. Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2016. "Closed-loop supply chains: What reverse logistics factors influence performance?," International Journal of Production Economics, Elsevier, vol. 175(C), pages 35-49.
    10. Hosoda, Takamichi & Disney, Stephen M. & Gavirneni, Srinagesh, 2015. "The impact of information sharing, random yield, correlation, and lead times in closed loop supply chains," European Journal of Operational Research, Elsevier, vol. 246(3), pages 827-836.
    11. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    12. Mordechai Henig & Yigal Gerchak, 1990. "The Structure of Periodic Review Policies in the Presence of Random Yield," Operations Research, INFORMS, vol. 38(4), pages 634-643, August.
    13. Disney, S. M. & Towill, D. R., 2003. "On the bullwhip and inventory variance produced by an ordering policy," Omega, Elsevier, vol. 31(3), pages 157-167, June.
    14. Hosoda, Takamichi & Disney, Stephen M., 2006. "On variance amplification in a three-echelon supply chain with minimum mean square error forecasting," Omega, Elsevier, vol. 34(4), pages 344-358, August.
    15. Herbert J. Vassian, 1955. "Application of Discrete Variable Servo Theory to Inventory Control," Operations Research, INFORMS, vol. 3(3), pages 272-282, August.
    16. Ali, Mohammad M. & Babai, Mohamed Zied & Boylan, John E. & Syntetos, A.A., 2017. "Supply chain forecasting when information is not shared," European Journal of Operational Research, Elsevier, vol. 260(3), pages 984-994.
    17. van der Laan, Erwin & Salomon, Marc & Dekker, Rommert, 1999. "An investigation of lead-time effects in manufacturing/remanufacturing systems under simple PUSH and PULL control strategies," European Journal of Operational Research, Elsevier, vol. 115(1), pages 195-214, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jackson Jinhong Mi & Zongsheng Huang & Kai Wang & Sang-Bing Tsai & Guodong Li & Jiangtao Wang, 2018. "The Presence of a Powerful Retailer on Dynamic Collecting Closed-Loop Supply Chain From a Sustainable Innovation Perspective," Sustainability, MDPI, Open Access Journal, vol. 10(7), pages 1-17, June.
    2. Agata Mesjasz-Lech & Pál Michelberger, 2019. "Sustainable Waste Logistics and the Development of Trade in Recyclable Raw Materials in Poland and Hungary," Sustainability, MDPI, Open Access Journal, vol. 11(15), pages 1-17, August.
    3. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    4. Ponte, Borja & Naim, Mohamed M. & Syntetos, Aris A., 2019. "The value of regulating returns for enhancing the dynamic behaviour of hybrid manufacturing-remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 278(2), pages 629-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:269:y:2018:i:1:p:313-326. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.